IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v16y2025i1d10.1007_s13132-024-02009-5.html
   My bibliography  Save this article

Strategies for Emission Reduction in Construction: The Role of China’s Carbon Trading Market

Author

Listed:
  • Qijuan Liu

    (Tianjin University)

  • Yilin Yin

    (Tianjin University
    Tianjin University of Technology)

Abstract

Amidst global population growth and increased resource consumption, carbon emissions from the construction sector pose a significant environmental challenge. In its commitment to sustainable construction and green development, China has set ambitious targets for “carbon peak and carbon neutrality.” This study pioneers a configurational analysis to decode the intricate dynamics within China’s carbon trading market, focusing on its capacity to diminish CO2 emissions. Utilizing a blend of necessary condition analysis (NCA) and fuzzy-set qualitative comparative analysis (fsQCA), we unravel the causal intricacies and pinpoint critical factors dictating emission reductions. Our research delineates three distinct emission reduction pathways: the efficient compliance-policy guidance path, highlighting the synergy of strict compliance regulations with clear policy directions; the efficient compliance-increasing activity path, emphasizing the dual importance of high compliance rates alongside a vibrant trading market; and the policy guidance-increasing activity synergy path, revealing a synergistic effect between stringent policy guidance and an expanding market. Among these, the market’s compliance rate emerges as paramount, underscoring its pivotal role in emission mitigation. The findings offer a nuanced understanding of China’s carbon market mechanics, presenting actionable insights for policymakers to enhance market efficacy and achieve substantial emission cuts. By spotlighting the multi-faceted strategies crucial for emission reduction, this study enriches the dialogue on carbon markets, contributing significantly to the knowledge economy discourse on leveraging policy and market dynamics for environmental sustainability and innovation.

Suggested Citation

  • Qijuan Liu & Yilin Yin, 2025. "Strategies for Emission Reduction in Construction: The Role of China’s Carbon Trading Market," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 3000-3029, March.
  • Handle: RePEc:spr:jknowl:v:16:y:2025:i:1:d:10.1007_s13132-024-02009-5
    DOI: 10.1007/s13132-024-02009-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-024-02009-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-024-02009-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Löschel, Andreas & Lutz, Benjamin Johannes & Managi, Shunsuke, 2019. "The impacts of the EU ETS on efficiency and economic performance – An empirical analyses for German manufacturing firms," Resource and Energy Economics, Elsevier, vol. 56(C), pages 71-95.
    2. Erik Haites, 2018. "Carbon taxes and greenhouse gas emissions trading systems: what have we learned?," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 955-966, September.
    3. Zhou, Fengxiu & Wang, Xiaoyu, 2022. "The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 365-381.
    4. Pan, Yanchun & Yang, Wen & Ma, Nan & Chen, Zhimin & Zhou, Ming & Xiong, Yi, 2019. "Game analysis of carbon emission verification: A case study from Shenzhen's cap-and-trade system in China," Energy Policy, Elsevier, vol. 130(C), pages 418-428.
    5. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    6. Sun Ae Kim & Jong Dae Kim, 2022. "Voluntary Carbon Disclosure (VCD) Strategy under the Korean ETS: With the Interaction among Carbon Performance, Foreign Sales Ratio and Media Visibility," IJERPH, MDPI, vol. 19(18), pages 1-19, September.
    7. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    8. Yan, Yaxue & Zhang, Xiaoling & Zhang, Jihong & Li, Kai, 2020. "Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story," Energy Policy, Elsevier, vol. 138(C).
    9. Thomas Stoerk & Daniel J. Dudek & Jia Yang, 2019. "China’s national carbon emissions trading scheme: lessons from the pilot emission trading schemes, academic literature, and known policy details," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 472-486, April.
    10. Zhongxiang Zhang, 2015. "Carbon emissions trading in China: the evolution from pilots to a nationwide scheme," Climate Policy, Taylor & Francis Journals, vol. 15(sup1), pages 104-126, December.
    11. Eugénie Joltreau & Katrin Sommerfeld, 2019. "Why does emissions trading under the EU Emissions Trading System (ETS) not affect firms’ competitiveness? Empirical findings from the literature," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 453-471, April.
    12. Hille, Erik & Shahbaz, Muhammad, 2019. "Sources of emission reductions: Market and policy-stringency effects," Energy Economics, Elsevier, vol. 78(C), pages 29-43.
    13. Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
    14. Cavallaro, Federico & Giaretta, Federico & Nocera, Silvio, 2018. "The potential of road pricing schemes to reduce carbon emissions," Transport Policy, Elsevier, vol. 67(C), pages 85-92.
    15. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    16. Agime Gerbeti, 2021. "Market Mechanisms for Reducing Emissions and the Introduction of a Flexible Consumption Tax," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 161-178, December.
    17. Viput Ongsakul & Salil K. Sen, 2019. "Low Carbon Energy Symbiosis for Sustainability: Review of Shared Value-based Policy Metabolism to Enhance the Implementability of the Sustainable Development Goals in Asia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 24-30.
    18. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    19. Yu, Xianyu & Wu, Zemin & Wang, Qunwei & Sang, Xiuzhi & Zhou, Dequn, 2020. "Exploring the investment strategy of power enterprises under the nationwide carbon emissions trading mechanism: A scenario-based system dynamics approach," Energy Policy, Elsevier, vol. 140(C).
    20. Jiaojiao Sun & Feng Dong, 2023. "Optimal reduction and equilibrium carbon allowance price for the thermal power industry under China’s peak carbon emissions target," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    21. Yuna Hao & Behrang Vand & Benjamin Manrique Delgado & Simone Baldi, 2023. "Market Manipulation in Stock and Power Markets: A Study of Indicator-Based Monitoring and Regulatory Challenges," Energies, MDPI, vol. 16(4), pages 1-28, February.
    22. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    23. Haider, Salman & Mishra, Prajna Paramita, 2021. "Does innovative capability enhance the energy efficiency of Indian Iron and Steel firms? A Bayesian stochastic frontier analysis," Energy Economics, Elsevier, vol. 95(C).
    24. Shanglei Chai & Ruixuan Sun & Ke Zhang & Yueting Ding & Wei Wei, 2022. "Is Emissions Trading Scheme (ETS) an Effective Market-Incentivized Environmental Regulation Policy? Evidence from China’s Eight ETS Pilots," IJERPH, MDPI, vol. 19(6), pages 1-18, March.
    25. Stuart Evans & Aaron Z. Wu, 2021. "What drives cooperation in carbon markets? Lessons from decision-makers in the Australia-EU ETS linking negotiations," Climate Policy, Taylor & Francis Journals, vol. 21(8), pages 1086-1098, September.
    26. Dallas Burtraw & Charles Holt & Karen Palmer & William Shobe, 2022. "Price-Responsive Allowance Supply in Emissions Markets," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 851-884.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Xiao & Yan Zhang & Jiekuan Zhang, 2023. "The Impact of Carbon Emission Trading on Industrial Green Total Factor Productivity," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    2. Zhang, Jiekuan, 2023. "Emissions trading scheme and energy consumption and output structure: Evidence from China," Renewable Energy, Elsevier, vol. 219(P1).
    3. Weng, Zhixiong & Liu, Tingting & Wu, Yufeng & Cheng, Cuiyun, 2022. "Air quality improvement effect and future contributions of carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 170(C).
    4. Xiao Yang & Wen Jia & Kedan Wang & Geng Peng, 2024. "Does the National Carbon Emissions Trading Market Promote Corporate Environmental Protection Investment? Evidence from China," Sustainability, MDPI, vol. 16(1), pages 1-22, January.
    5. Dong, Zhaoyingzi & Xiao, Yue, 2024. "Carbon emissions trading policy and climate injustice: A study on economic distributional impacts," Energy, Elsevier, vol. 296(C).
    6. Guanyu LU & Kenta TANAKA & Toshi H. ARIMURA, 2023. "The Impacts of the Tokyo and Saitama ETSs on the Energy Efficiency Performance of Manufacturing Facilities," Discussion papers 23007, Research Institute of Economy, Trade and Industry (RIETI).
    7. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "EU Carbon Emissions Market Development and Its Impact on Penetration of Renewables in the Power Sector," Energies, MDPI, vol. 12(15), pages 1-20, August.
    8. Qi, Xiaoyuan & Han, Ying, 2023. "Research on the evolutionary strategy of carbon market under “dual carbon” goal: From the perspective of dynamic quota allocation," Energy, Elsevier, vol. 274(C).
    9. Zhixiong Weng & Cuiyun Cheng & Yang Xie & Hao Ma, 2022. "Reduction Effect of Carbon Emission Trading Policy in Decreasing PM 2.5 Concentrations in China," IJERPH, MDPI, vol. 19(23), pages 1-12, December.
    10. Rui Cao & Yanling Xiao & Fengxue Yin, 2023. "Spatio-Temporal Evolution of High-Quality Development and the Impact of Carbon Emissions Trading Schemes," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    11. Yang, Lisha & Li, Yutianhao & Liu, Hongxun, 2021. "Did carbon trade improve green production performance? Evidence from China," Energy Economics, Elsevier, vol. 96(C).
    12. Chu, Baoju & Dong, Yizhe & Liu, Yaorong & Ma, Diandian & Wang, Tianju, 2024. "Does China's emission trading scheme affect corporate financial performance: Evidence from a quasi-natural experiment," Economic Modelling, Elsevier, vol. 132(C).
    13. Fang Zhang & Zhengjun Zhang, 2020. "The tail dependence of the carbon markets: The implication of portfolio management," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    14. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    15. Yu, Jian & Liu, Peng & Shi, Xunpeng & Ai, Xianneng, 2023. "China’s emissions trading scheme, firms’ R&D investment and emissions reduction," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1021-1037.
    16. Chang, Chia-Lin & Mai, Te-Ke & McAleer, Michael, 2019. "Establishing national carbon emission prices for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 1-16.
    17. Xiao Liu & Yue Zhu, 2024. "Research on the Impact Mechanism of ETS on Green Innovation in China’s High-Carbon Industries: A Perspective of Enterprise Heterogeneity," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
    18. Chunhua Lu & Hong Li, 2023. "Have China’s Regional Carbon Emissions Trading Schemes Promoted Industrial Resource Allocation Efficiency? The Evidence from Heavily Polluted Industries at the Provincial Level," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    19. Xiangnan Zhai & Xue Yang & Darko B. Vukovic & Daria A. Dinets & Qiang Liu, 2025. "Carbon Emissions Trading Policy and Regional Energy Efficiency: A Quasi-Natural Experiment from China," Energies, MDPI, vol. 18(5), pages 1-20, February.
    20. Shao, Jun & Wang, Lianghu, 2023. "Can new-type urbanization improve the green total factor energy efficiency? Evidence from China," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:16:y:2025:i:1:d:10.1007_s13132-024-02009-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.