IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v9y2023i1d10.1186_s40854-022-00410-0.html
   My bibliography  Save this article

Optimal reduction and equilibrium carbon allowance price for the thermal power industry under China’s peak carbon emissions target

Author

Listed:
  • Jiaojiao Sun

    (China University of Mining and Technology)

  • Feng Dong

    (China University of Mining and Technology)

Abstract

As the largest source of carbon emissions in China, the thermal power industry is the only emission-controlled industry in the first national carbon market compliance cycle. Its conversion to clean-energy generation technologies is also an important means of reducing CO2 emissions and achieving the carbon peak and carbon neutral commitments. This study used fractional Brownian motion to describe the energy-switching cost and constructed a stochastic optimization model on carbon allowance (CA) trading volume and emission-reduction strategy during compliance period with the Hurst exponent and volatility coefficient in the model estimated. We defined the optimal compliance cost of thermal power enterprises as the form of the unique solution of the Hamilton–Jacobi–Bellman equation by combining the dynamic optimization principle and the fractional Itô’s formula. In this manner, we obtained the models for optimal emission reduction and equilibrium CA price. Our numerical analysis revealed that, within a compliance period of 2021–2030, the optimal reductions and desired equilibrium prices of CAs changed concurrently, with an increasing trend annually in different peak-year scenarios. Furthermore, sensitivity analysis revealed that the energy price indirectly affected the equilibrium CA price by influencing the Hurst exponent, the depreciation rate positively impacted the CA price, and increasing the initial CA reduced the optimal reduction and the CA price. Our findings can be used to develop optimal emission-reduction strategies for thermal power enterprises and carbon pricing in the carbon market.

Suggested Citation

  • Jiaojiao Sun & Feng Dong, 2023. "Optimal reduction and equilibrium carbon allowance price for the thermal power industry under China’s peak carbon emissions target," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
  • Handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00410-0
    DOI: 10.1186/s40854-022-00410-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-022-00410-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-022-00410-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    2. Kollenberg, Sascha & Taschini, Luca, 2016. "Emissions trading systems with cap adjustments," Journal of Environmental Economics and Management, Elsevier, vol. 80(C), pages 20-36.
    3. Rivera, Nathaly M. & Loveridge, Scott, 2022. "Coal-to-gas fuel switching and its effects on housing prices," Energy Economics, Elsevier, vol. 106(C).
    4. Yu, Bolin & Fang, Debin & Meng, Jingxuan, 2021. "Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China," Energy, Elsevier, vol. 234(C).
    5. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    6. Kumar, Pankaj & Banerjee, Rangan & Mishra, Trupti, 2020. "A framework for analyzing trade-offs in cost and emissions in power sector," Energy, Elsevier, vol. 195(C).
    7. Weiliang Lu & Alexis Arrigoni & Anatoliy Swishchuk & Stéphane Goutte, 2021. "Modelling of Fuel- and Energy-Switching Prices by Mean-Reverting Processes and Their Applications to Alberta Energy Markets," Mathematics, MDPI, vol. 9(7), pages 1-24, March.
    8. Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
    9. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    11. Zhou, Kaile & Li, Yiwen, 2019. "Influencing factors and fluctuation characteristics of China’s carbon emission trading price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 459-474.
    12. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Guo, Xiaojun & Zhang, Mingming, 2019. "Low-carbon power dispatch with wind power based on carbon trading mechanism," Energy, Elsevier, vol. 170(C), pages 250-260.
    13. repec:dau:papers:123456789/4210 is not listed on IDEAS
    14. I. A. Grant Wilson & Iain Staffell, 2018. "Rapid fuel switching from coal to natural gas through effective carbon pricing," Nature Energy, Nature, vol. 3(5), pages 365-372, May.
    15. Zhang, Xiaoyun & Dong, Feng, 2023. "What affects residents’ behavioral intentions to ban gasoline vehicles? Evidence from an emerging economy," Energy, Elsevier, vol. 263(PB).
    16. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.
    17. Jin Liang & Wenlin Huang, 2020. "Optimal Control Strategy of Companies: Inheriting Period and Carbon Emission Reduction," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, November.
    18. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    19. Liu, Zhibin & Huang, Shan, 2021. "Carbon option price forecasting based on modified fractional Brownian motion optimized by GARCH model in carbon emission trading," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    20. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Kopanos, Georgios M. & Pistikopoulos, Efstratios N. & Georgiadis, Michael C., 2014. "A spatial multi-period long-term energy planning model: A case study of the Greek power system," Applied Energy, Elsevier, vol. 115(C), pages 456-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yajie & Dong, Feng & Li, Guoqing & Huang, Jianheng & Yang, Shanshan & Wang, Yulong, 2023. "Public willingness to support the policy of banning gasoline vehicles sales and its internal mechanism," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jia & Tan, Xiujie & He, Gang & Liu, Yu, 2019. "Disentangling the drivers of carbon prices in China's ETS pilots — An EEMD approach," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 1-9.
    2. Goodell, John W. & Nammouri, Hela & Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Carbon allowances amid climate change concerns: Fresh insights from wavelet multiscale analysis," Finance Research Letters, Elsevier, vol. 55(PA).
    3. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    4. Sattarhoff, Cristina & Gronwald, Marc, 2022. "Measuring informational efficiency of the European carbon market — A quantitative evaluation of higher order dependence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Liudmila Reshetnikova & Natalia Boldyreva & Anton Devyatkov & Zhanna Pisarenko & Danila Ovechkin, 2023. "Carbon Pricing in Current Global Institutional Changes," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    6. Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
    7. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    8. Pham, Linh & Karim, Sitara & Naeem, Muhammad Abubakr & Long, Cheng, 2022. "A tale of two tails among carbon prices, green and non-green cryptocurrencies," International Review of Financial Analysis, Elsevier, vol. 82(C).
    9. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    10. Dou, Yue & Li, Yiying & Dong, Kangyin & Ren, Xiaohang, 2022. "Dynamic linkages between economic policy uncertainty and the carbon futures market: Does Covid-19 pandemic matter?," Resources Policy, Elsevier, vol. 75(C).
    11. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    12. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    13. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    14. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    15. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    16. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    17. Ozturk, Serda Selin & Demirer, Riza & Gupta, Rangan, 2022. "Climate uncertainty and carbon emissions prices: The relative roles of transition and physical climate risks," Economics Letters, Elsevier, vol. 217(C).
    18. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
    19. Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
    20. Cong, Ren & Lo, Alex Y., 2017. "Emission trading and carbon market performance in Shenzhen, China," Applied Energy, Elsevier, vol. 193(C), pages 414-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00410-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.