An interval constraint-based trading strategy with social sentiment for the stock market
Author
Abstract
Suggested Citation
DOI: 10.1186/s40854-023-00567-2
Download full text from publisher
References listed on IDEAS
- Anthony Sanford, 2022. "Does Perception Matter in Asset Pricing? Modeling Volatility Jumps Using Twitter-Based Sentiment Indices," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(3), pages 262-280, July.
- Jiang, Yong & Wang, Gang-Jin & Ma, Chaoqun & Yang, Xiaoguang, 2021. "Do credit conditions matter for the impact of oil price shocks on stock returns? Evidence from a structural threshold VAR model," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 1-15.
- Deng, Shangkun & Huang, Xiaoru & Zhu, Yingke & Su, Zhihao & Fu, Zhe & Shimada, Tatsuro, 2023. "Stock index direction forecasting using an explainable eXtreme Gradient Boosting and investor sentiments," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Calomiris, Charles W. & Mamaysky, Harry, 2019. "How news and its context drive risk and returns around the world," Journal of Financial Economics, Elsevier, vol. 133(2), pages 299-336.
- Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2016.
"Stock Market Volatility and Learning,"
Journal of Finance, American Finance Association, vol. 71(1), pages 33-82, February.
- Marcet, Albert & Nicolini, Juan Pablo & Adam, Klaus, 2007. "Stock Market Volatility and Learning," CEPR Discussion Papers 6518, C.E.P.R. Discussion Papers.
- Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2015. "Stock Market Volatility and Learning," Working Papers 720, Federal Reserve Bank of Minneapolis.
- Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2011. "Stock Market Volatility and Learning," CEP Discussion Papers dp1077, Centre for Economic Performance, LSE.
- Albert Marcet & Klaus Adam & Juan Pablo Nicolini, 2008. "Stock Market Volatility and Learning," UFAE and IAE Working Papers 732.08, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
- Klaus Adam & Juan Pablo Nicolini & Albert Marcet, 2015. "Stock Market Volatility and Learning," Working Papers 336, Barcelona School of Economics.
- Adam, Klaus & Marcet, Albert & Nicolini, Juan Pablo, 2008. "Stock market volatility and learning," Working Paper Series 862, European Central Bank.
- Adam, Klaus & Marcet, Albert & Nicolini, Juan Pablo, 2011. "Stock market volatility and learning," LSE Research Online Documents on Economics 121739, London School of Economics and Political Science, LSE Library.
- Adam, Klaus & Marcet, Albert & Nicolini, Juan Pablo, 2012. "Stock Market Volatility and Learning," Working Papers 12-06, University of Mannheim, Department of Economics.
- Ghosh, Pushpendu & Neufeld, Ariel & Sahoo, Jajati Keshari, 2022. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Finance Research Letters, Elsevier, vol. 46(PA).
- Gupta, Rangan & Pierdzioch, Christian & Vivian, Andrew J. & Wohar, Mark E., 2019.
"The predictive value of inequality measures for stock returns: An analysis of long-span UK data using quantile random forests,"
Finance Research Letters, Elsevier, vol. 29(C), pages 315-322.
- Rangan Gupta & Christian Pierdzioch & Andrew J. Vivian & Mark E. Wohar, 2018. "The Predictive Value of Inequality Measures for Stock Returns: An Analysis of Long-Span UK Data Using Quantile Random Forests," Working Papers 201809, University of Pretoria, Department of Economics.
- Na, Haejung & Kim, Soonho, 2021. "Predicting stock prices based on informed traders’ activities using deep neural networks," Economics Letters, Elsevier, vol. 204(C).
- Ribeiro Ramos, Francisco Fernando, 2003. "Forecasts of market shares from VAR and BVAR models: a comparison of their accuracy," International Journal of Forecasting, Elsevier, vol. 19(1), pages 95-110.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Kang, Yuanfei, 2018. "Regulatory institutions, natural resource endowment and location choice of emerging-market FDI: A dynamic panel data analysis," Journal of Multinational Financial Management, Elsevier, vol. 45(C), pages 1-14.
- Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
- Lin, Yu & Yan, Yan & Xu, Jiali & Liao, Ying & Ma, Feng, 2021. "Forecasting stock index price using the CEEMDAN-LSTM model," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Kim, Neri & Lučivjanská, Katarína & Molnár, Peter & Villa, Roviel, 2019. "Google searches and stock market activity: Evidence from Norway," Finance Research Letters, Elsevier, vol. 28(C), pages 208-220.
- Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
- Dehua Shen & Yongjie Zhang & Xiong Xiong & Wei Zhang, 2017. "Baidu index and predictability of Chinese stock returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-8, December.
- Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
- Xi Zhang & Jiawei Shi & Di Wang & Binxing Fang, 2018. "Exploiting Investors Social Network for Stock Prediction in China's Market," Papers 1801.00597, arXiv.org.
- Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
- Zhenni Jin & Kun Guo & Yi Sun & Lin Lai & Zhewen Liao, 2020. "The industrial asymmetry of the stock price prediction with investor sentiment: Based on the comparison of predictive effects with SVR," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1166-1178, November.
- Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
- Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Maqsood, Haider & Mehmood, Irfan & Maqsood, Muazzam & Yasir, Muhammad & Afzal, Sitara & Aadil, Farhan & Selim, Mahmoud Mohamed & Muhammad, Khan, 2020. "A local and global event sentiment based efficient stock exchange forecasting using deep learning," International Journal of Information Management, Elsevier, vol. 50(C), pages 432-451.
- Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
- Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
- Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ying Wang & Hongwei Zhang & Wang Gao & Cai Yang, 2023. "Spillover effects from news to travel and leisure stocks during the COVID-19 pandemic: Evidence from the time and frequency domains," Tourism Economics, , vol. 29(2), pages 460-487, March.
- Wen Long & Man Guo, 2025. "Social media and capital markets: an interdisciplinary bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-32, December.
- Gunay, Samet & Sraieb, Mohamed M. & Muhammed, Shahnawaz, 2024. "Decrypting Metaverse crypto Market: A nonlinear analysis of investor sentiment," International Review of Financial Analysis, Elsevier, vol. 96(PB).
- Blajer-Gołębiewska, Anna & Honecker, Lukas & Nowak, Sabina, 2024. "Investor sentiment response to COVID-19 outbreak-related news: A sectoral analysis of US firms," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Geng, Yuedan & Ye, Qiang & Jin, Yu & Shi, Wen, 2022. "Crowd wisdom and internet searches: What happens when investors search for stocks?," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Divya Aggarwal & Sougata Banerjee, 2025. "Forecasting of S&P 500 ESG Index by Using CEEMDAN and LSTM Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 339-355, March.
- Yongan Xu & Jianqiong Wang & Zhonglu Chen & Chao Liang, 2023. "Sentiment indices and stock returns: Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1063-1080, January.
- Dinggao Liu & Liuqing Wang & Shuo Lin & Zhenpeng Tang, 2025. "A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
- Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
- Nuzzo, Simone & Morone, Andrea, 2017.
"Asset markets in the lab: A literature review,"
Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 42-50.
- Morone, Andrea & Nuzzo, Simone, 2016. "Asset Markets in the Lab: a literature review," MPRA Paper 70461, University Library of Munich, Germany.
- Andrea Morone & Simone Nuzzo, 2016. "Asset markets in the lab: A literature review," Working Papers 2016/10, Economics Department, Universitat Jaume I, Castellón (Spain).
- Morone, Andrea & Nuzzo, Simone, 2016. "Asset markets in the lab: A literature review," Kiel Working Papers 2060, Kiel Institute for the World Economy (IfW Kiel).
- Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
- Pedro Reis & Ana Paula Serra & Jo~ao Gama, 2025. "The Role of Deep Learning in Financial Asset Management: A Systematic Review," Papers 2503.01591, arXiv.org.
- Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
- He, Mengxi & Wen, Danyan & Xing, Lu & Zhang, Yaojie, 2024. "Industry volatility concentration and the predictability of aggregate stock market volatility," International Review of Economics & Finance, Elsevier, vol. 95(C).
- Steffen Nauhaus & Johannes Luger & Sebastian Raisch, 2021. "Strategic Decision Making in the Digital Age: Expert Sentiment and Corporate Capital Allocation," Journal of Management Studies, Wiley Blackwell, vol. 58(7), pages 1933-1961, November.
- Li, Jinfang, 2022. "The sentiment pricing dynamics with short-term and long-term learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
More about this item
Keywords
Stock price forecasting; Deep learning; Sentiment analysis; Trading strategy; COVID-19 era;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00567-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.