IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v82y2022ics1057521922001697.html
   My bibliography  Save this article

Crowd wisdom and internet searches: What happens when investors search for stocks?

Author

Listed:
  • Geng, Yuedan
  • Ye, Qiang
  • Jin, Yu
  • Shi, Wen

Abstract

Search engines and social media have become popular among investors as tools for finding and sharing information. The investor social media gathers a large amount of investor-generated content (IGC), which reflects the crowd wisdom of investors, while search engines help investors increase their chances of finding them. In this study, we integrate investor search behavior data from the Baidu Index and investor crowd wisdom data from Eastmoney Guba to assemble a unique data set at the daily level. We then describe and quantify crowd wisdom from investor-generated content (IGC) using three dimensions (IGC average sentiment, IGC sentiment volatility, and IGC increased volume) to investigate the impact of crowd wisdom in the relationship between investors' Internet searches and next-day stock returns. In our empirical analysis, we find that IGC average sentiment strengthens the relationship between investors' Internet searches and next-day stock returns, while IGC sentiment volatility and IGC increased volume have negative effects. These moderating effects are also moderated by institutional investor attention, search terminal preference, and content reading volume. These findings help to explain the value and impact of crowd wisdom when investors search for stock information through the Internet.

Suggested Citation

  • Geng, Yuedan & Ye, Qiang & Jin, Yu & Shi, Wen, 2022. "Crowd wisdom and internet searches: What happens when investors search for stocks?," International Review of Financial Analysis, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:finana:v:82:y:2022:i:c:s1057521922001697
    DOI: 10.1016/j.irfa.2022.102208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521922001697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2022.102208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leung, Henry & Ton, Thai, 2015. "The impact of internet stock message boards on cross-sectional returns of small-capitalization stocks," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 37-55.
    2. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    3. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    4. Aouadi, Amal & Arouri, Mohamed & Teulon, Frédéric, 2013. "Investor attention and stock market activity: Evidence from France," Economic Modelling, Elsevier, vol. 35(C), pages 674-681.
    5. Bin Gu & Prabhudev Konana & Rajagopal Raghunathan & Hsuanwei Michelle Chen, 2014. "Research Note —The Allure of Homophily in Social Media: Evidence from Investor Responses on Virtual Communities," Information Systems Research, INFORMS, vol. 25(3), pages 604-617, September.
    6. Womack, Kent L, 1996. "Do Brokerage Analysts' Recommendations Have Investment Value?," Journal of Finance, American Finance Association, vol. 51(1), pages 137-167, March.
    7. Xuemin (Sterling) Yan & Zhe Zhang, 2009. "Institutional Investors and Equity Returns: Are Short-term Institutions Better Informed?," The Review of Financial Studies, Society for Financial Studies, vol. 22(2), pages 893-924, February.
    8. Chen, Yunsen & Xie, Yuan & You, Hong & Zhang, Yanan, 2018. "Does crackdown on corruption reduce stock price crash risk? Evidence from China," Journal of Corporate Finance, Elsevier, vol. 51(C), pages 125-141.
    9. Sun, Licheng & Najand, Mohammad & Shen, Jiancheng, 2016. "Stock return predictability and investor sentiment: A high-frequency perspective," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 147-164.
    10. Savor, Pavel G., 2012. "Stock returns after major price shocks: The impact of information," Journal of Financial Economics, Elsevier, vol. 106(3), pages 635-659.
    11. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    12. Brad M. Barber & Terrance Odean, 2001. "The Internet and the Investor," Journal of Economic Perspectives, American Economic Association, vol. 15(1), pages 41-54, Winter.
    13. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    14. Dehua Shen & Yongjie Zhang & Xiong Xiong & Wei Zhang, 2017. "Baidu index and predictability of Chinese stock returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-8, December.
    15. Calomiris, Charles W. & Mamaysky, Harry, 2019. "How news and its context drive risk and returns around the world," Journal of Financial Economics, Elsevier, vol. 133(2), pages 299-336.
    16. Charles Bram Cadsby, 1992. "The CAPM and the Calendar: Empirical Anomalies and the Risk-Return Relationship," Management Science, INFORMS, vol. 38(11), pages 1543-1561, November.
    17. John S. Howe & Emre Unlu & Xuemin (Sterling) Yan, 2009. "The Predictive Content of Aggregate Analyst Recommendations," Journal of Accounting Research, Wiley Blackwell, vol. 47(3), pages 799-821, June.
    18. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    19. Asquith, Paul & Mikhail, Michael B. & Au, Andrea S., 2005. "Information content of equity analyst reports," Journal of Financial Economics, Elsevier, vol. 75(2), pages 245-282, February.
    20. Meng, Xiangtong & Zhang, Wei & Li, Youwei & Cao, Xing & Feng, Xu, 2020. "Social media effect, investor recognition and the cross-section of stock returns," International Review of Financial Analysis, Elsevier, vol. 67(C).
    21. Michael S. Drake & Darren T. Roulstone & Jacob R. Thornock, 2012. "Investor Information Demand: Evidence from Google Searches Around Earnings Announcements," Journal of Accounting Research, Wiley Blackwell, vol. 50(4), pages 1001-1040, September.
    22. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    23. Michael S. Drake & Jared Jennings & Darren T. Roulstone & Jacob R. Thornock, 2017. "The Comovement of Investor Attention," Management Science, INFORMS, vol. 63(9), pages 2847-2867, September.
    24. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    25. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    26. Urquhart, Andrew & McGroarty, Frank, 2014. "Calendar effects, market conditions and the Adaptive Market Hypothesis: Evidence from long-run U.S. data," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 154-166.
    27. Merton, Robert C, 1987. "A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, American Finance Association, vol. 42(3), pages 483-510, July.
    28. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    29. Andrew Ellul & Vijay Yerramilli, 2013. "Stronger Risk Controls, Lower Risk: Evidence from U.S. Bank Holding Companies," Journal of Finance, American Finance Association, vol. 68(5), pages 1757-1803, October.
    30. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    31. Gu, Chen & Kurov, Alexander, 2020. "Informational role of social media: Evidence from Twitter sentiment," Journal of Banking & Finance, Elsevier, vol. 121(C).
    32. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    33. Boni, Leslie & Womack, Kent L., 2006. "Analysts, Industries, and Price Momentum," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(1), pages 85-109, March.
    34. Azi Ben-Rephael & Zhi Da & Ryan D. Israelsen, 2017. "It Depends on Where You Search: Institutional Investor Attention and Underreaction to News," The Review of Financial Studies, Society for Financial Studies, vol. 30(9), pages 3009-3047.
    35. John R. Nofsinger & Richard W. Sias, 1999. "Herding and Feedback Trading by Institutional and Individual Investors," Journal of Finance, American Finance Association, vol. 54(6), pages 2263-2295, December.
    36. Gao, Ya & Xiong, Xiong & Feng, Xu & Li, Youwei & Vigne, Samuel A., 2019. "A new attention proxy and order imbalance: Evidence from China," Finance Research Letters, Elsevier, vol. 29(C), pages 411-417.
    37. Kou, Yi & Ye, Qiang & Zhao, Feng & Wang, Xiaolin, 2018. "Effects of investor attention on commodity futures markets," Finance Research Letters, Elsevier, vol. 25(C), pages 190-195.
    38. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    39. Roman Lukyanenko & Jeffrey Parsons & Yolanda F. Wiersma, 2014. "The IQ of the Crowd: Understanding and Improving Information Quality in Structured User-Generated Content," Information Systems Research, INFORMS, vol. 25(4), pages 669-689, December.
    40. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    41. Takeda, Fumiko & Wakao, Takumi, 2014. "Google search intensity and its relationship with returns and trading volume of Japanese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 1-18.
    42. Xu, Yongxin & Xuan, Yuhao & Zheng, Gaoping, 2021. "Internet searching and stock price crash risk: Evidence from a quasi-natural experiment," Journal of Financial Economics, Elsevier, vol. 141(1), pages 255-275.
    43. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    44. Xiaolin Wang & Qiang Ye & Feng Zhao & Yi Kou, 2018. "Investor sentiment and the Chinese index futures market: Evidence from the internet search," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(4), pages 468-477, April.
    45. Brian S. Butler, 2001. "Membership Size, Communication Activity, and Sustainability: A Resource-Based Model of Online Social Structures," Information Systems Research, INFORMS, vol. 12(4), pages 346-362, December.
    46. Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).
    47. Ding, Rong & Hou, Wenxuan, 2015. "Retail investor attention and stock liquidity," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 12-26.
    48. Bin Gu & Prabhudev Konana & Balaji Rajagopalan & Hsuan-Wei Michelle Chen, 2007. "Competition Among Virtual Communities and User Valuation: The Case of Investing-Related Communities," Information Systems Research, INFORMS, vol. 18(1), pages 68-85, March.
    49. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    50. Gang Kou & Özlem Olgu Akdeniz & Hasan Dinçer & Serhat Yüksel, 2021. "Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-28, December.
    51. William J. Mayew & Mohan Venkatachalam, 2012. "The Power of Voice: Managerial Affective States and Future Firm Performance," Journal of Finance, American Finance Association, vol. 67(1), pages 1-44, February.
    52. Li, Xiaorong & Wang, Steven Shuye & Wang, Xue, 2017. "Trust and stock price crash risk: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 76(C), pages 74-91.
    53. Dzielinski, Michal, 2012. "Measuring economic uncertainty and its impact on the stock market," Finance Research Letters, Elsevier, vol. 9(3), pages 167-175.
    54. JaeHong Park & Prabhudev Konana & Bin Gu & Alok Kumar & Rajagopal Raghunathan, 2013. "Information Valuation and Confirmation Bias in Virtual Communities: Evidence from Stock Message Boards," Information Systems Research, INFORMS, vol. 24(4), pages 1050-1067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Xiaoming, 2024. "Fintech platforms and information service quality from the perspective of investor cognition," Technology in Society, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    2. Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    3. María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    4. Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
    5. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    6. Chen, Zhongdong & Craig, Karen Ann, 2023. "Active attention, retail investor base, and stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    7. Cheng, Feiyang & Wang, Chunfeng & Chiao, Chaoshin & Yao, Shouyu & Fang, Zhenming, 2021. "Retail attention, retail trades, and stock price crash risk," Emerging Markets Review, Elsevier, vol. 49(C).
    8. Gang Chu & Xiao Li & Dehua Shen & Yongjie Zhang, 2021. "Stock Crashes and Jumps Reactions to Information Demand and Supply: An Intraday Analysis," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(3), pages 397-427, September.
    9. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    10. Ramos, Sofia B. & Latoeiro, Pedro & Veiga, Helena, 2020. "Limited attention, salience of information and stock market activity," Economic Modelling, Elsevier, vol. 87(C), pages 92-108.
    11. Ana Brochado, 2016. "Investor attention and Portuguese stock market volatility: We’ll google it for you!," EcoMod2016 9345, EcoMod.
    12. Chen, Zhongdong & Schmidt, Adam & Wang, Jin’ai, 2021. "Retail investor risk-seeking, attention, and the January effect," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    13. Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).
    14. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    15. Adachi, Yuta & Masuda, Motoki & Takeda, Fumiko, 2017. "Google search intensity and its relationship to the returns and liquidity of Japanese startup stocks," Pacific-Basin Finance Journal, Elsevier, vol. 46(PB), pages 243-257.
    16. Xiong Xiong & Zhang Jin & Jin Xi & Feng Xu, 2016. "Review on Financial Innovations in Big Data Era," Journal of Systems Science and Information, De Gruyter, vol. 4(6), pages 489-504, December.
    17. Aharon, David Y. & Qadan, Mahmoud, 2018. "What drives the demand for information in the commodity market?," Resources Policy, Elsevier, vol. 59(C), pages 532-543.
    18. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    19. Ming‐Hung Wu & Wei‐Che Tsai & Pei‐Shih Weng & Dan‐Yi Li, 2021. "Effects of investor attention in China's commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1315-1332, August.
    20. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.

    More about this item

    Keywords

    Internet search; Crowd wisdom; Investor-generated content (IGC); Social media; Stock returns;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:82:y:2022:i:c:s1057521922001697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.