IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v128y2023ics0140988323006345.html
   My bibliography  Save this article

A new hybrid deep learning model for monthly oil prices forecasting

Author

Listed:
  • Guan, Keqin
  • Gong, Xu

Abstract

The forecast of crude oil prices has always been important for investors and scholars and has drawn more attention to applying deep learning techniques in recent years. Under this circumstance, firstly, this paper proposes a novel hybrid deep learning forecasting model named Mod-VMD-BiLSTM based on the variational mode decomposition (VMD) and bidirectional long short-term memory (BiLSTM) algorithms. Next, several empirical studies and statistical evaluations are conducted to evaluate its forecasting performance. Our empirical results show that the preprocessing of decomposed series is beneficial to capture temporal general feature patterns hidden in sub-series, thereby helping to produce more accurate and robust forecasting results than the competing benchmark models among all scenarios. And all the evaluation metric values can pass the corresponding statistical tests, making the conclusions more convincing and comprehensive. Finally, the robustness tests confirm that the proposed forecasting framework is robust and superior for modeling and forecasting monthly oil prices time series.

Suggested Citation

  • Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006345
    DOI: 10.1016/j.eneco.2023.107136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323006345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Fenghua & Chen, Meng & Zhang, Yun & Miao, Xiao, 2023. "Oil price uncertainty and audit fees: Evidence from the energy industry," Energy Economics, Elsevier, vol. 125(C).
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    4. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    5. Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    6. Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
    7. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    8. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    9. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    10. Yuchen Zhang & Shigeyuki Hamori, 2020. "The Predictability of the Exchange Rate When Combining Machine Learning and Fundamental Models," JRFM, MDPI, vol. 13(3), pages 1-16, March.
    11. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    12. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    13. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    14. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    15. Yun Bai & Xixi Li & Hao Yu & Suling Jia, 2020. "Crude oil price forecasting incorporating news text," Papers 2002.02010, arXiv.org, revised Jul 2021.
    16. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
    17. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    18. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    19. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    20. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    21. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    22. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    23. Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
    24. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    25. Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
    26. Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
    27. Dai, Zhifeng & Zhou, Huiting & Kang, Jie & Wen, Fenghua, 2021. "The skewness of oil price returns and equity premium predictability," Energy Economics, Elsevier, vol. 94(C).
    28. Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting crude oil prices: A reduced-rank approach," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 698-711.
    29. Ye, Michael & Zyren, John & Shore, Joanne, 2005. "A monthly crude oil spot price forecasting model using relative inventories," International Journal of Forecasting, Elsevier, vol. 21(3), pages 491-501.
    30. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    31. Chen, Lin & Wen, Fenghua & Li, Wanyang & Yin, Hua & Zhao, Lili, 2022. "Extreme risk spillover of the oil, exchange rate to Chinese stock market: Evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 107(C).
    32. Sami Ben Jabeur & Rabeh Khalfaoui & Wissal Ben Arfi, 2021. "The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning," Post-Print hal-03797577, HAL.
    33. Chiew, Ernest & Choong, Shin Siang, 2022. "A solution for M5 Forecasting - Uncertainty: Hybrid gradient boosting and autoregressive recurrent neural network for quantile estimation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1442-1447.
    34. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
    35. Lin, Yu & Xiao, Yang & Li, Fuxing, 2020. "Forecasting crude oil price volatility via a HM-EGARCH model," Energy Economics, Elsevier, vol. 87(C).
    36. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    37. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    38. Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
    39. Yu, Lean & Liang, Shaodong & Chen, Rongda & Lai, Kin Keung, 2022. "Predicting monthly biofuel production using a hybrid ensemble forecasting methodology," International Journal of Forecasting, Elsevier, vol. 38(1), pages 3-20.
    40. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
    41. Farajzadeh, Zakariya & Nematollahi, Mohammad Amin, 2018. "Energy intensity and its components in Iran: Determinants and trends," Energy Economics, Elsevier, vol. 73(C), pages 161-177.
    42. Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
    43. Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
    44. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    45. Qin Li & Shaobo Li & Jie Hu & Sen Zhang & Jianjun Hu, 2018. "Tourism Review Sentiment Classification Using a Bidirectional Recurrent Neural Network with an Attention Mechanism and Topic-Enriched Word Vectors," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    46. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    47. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    48. Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
    49. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    50. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    51. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    2. Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
    3. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
    4. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    5. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    6. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    7. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    8. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    9. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    10. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    11. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    12. Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
    13. Dai, Zhifeng & Zhou, Huiting & Kang, Jie & Wen, Fenghua, 2021. "The skewness of oil price returns and equity premium predictability," Energy Economics, Elsevier, vol. 94(C).
    14. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    15. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    16. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    17. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    18. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. Zhang, Yue-Jun & Zhang, Han, 2023. "Volatility forecasting of crude oil futures market: Which structural change-based HAR models have better performance?," International Review of Financial Analysis, Elsevier, vol. 85(C).
    20. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.