IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i2p339-355.html
   My bibliography  Save this article

Forecasting of S&P 500 ESG Index by Using CEEMDAN and LSTM Approach

Author

Listed:
  • Divya Aggarwal
  • Sougata Banerjee

Abstract

This study aims to forecast the S&P 500 ESG index using the mixture model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and long short‐term memory (LSTM) prediction models. CEEMDAN enables decomposing the index's original return series into different intrinsic mode functions (IMFs) and a residual series. The decomposed IMFs are then regrouped into aggregate series depicting high frequency and medium frequency, while the residual series represent the trend component. LSTM algorithm is used on the aggregated series to obtain predicted values of the same. The study compares different prediction algorithms to identify their performance and explore the predictive power of the hybrid models.

Suggested Citation

  • Divya Aggarwal & Sougata Banerjee, 2025. "Forecasting of S&P 500 ESG Index by Using CEEMDAN and LSTM Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 339-355, March.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:339-355
    DOI: 10.1002/for.3201
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3201
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    4. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    5. repec:zbw:bofrdp:2010_006 is not listed on IDEAS
    6. Ghosh, Pushpendu & Neufeld, Ariel & Sahoo, Jajati Keshari, 2022. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Finance Research Letters, Elsevier, vol. 46(PA).
    7. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    8. Xing Chen & Bert Scholtens, 2018. "The urge to act: A comparison of active and passive socially responsible investment funds in the United States," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 25(6), pages 1154-1173, November.
    9. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    10. Ortas, Eduardo & Moneva, José M. & Salvador, Manuel, 2012. "Does socially responsible investment equity indexes in emerging markets pay off? Evidence from Brazil," Emerging Markets Review, Elsevier, vol. 13(4), pages 581-597.
    11. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    12. Crowley, Patrick M., 2010. "Long cycles in growth : explorations using new frequency domain techniques with US data," Research Discussion Papers 6/2010, Bank of Finland.
    13. Lin, Yu & Yan, Yan & Xu, Jiali & Liao, Ying & Ma, Feng, 2021. "Forecasting stock index price using the CEEMDAN-LSTM model," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    14. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    15. Luluk Widyawati, 2020. "A systematic literature review of socially responsible investment and environmental social governance metrics," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 619-637, February.
    16. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    17. Galema, Rients & Plantinga, Auke & Scholtens, Bert, 2008. "The stocks at stake: Return and risk in socially responsible investment," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2646-2654, December.
    18. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    19. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    20. Crowley, Patrick M., 2010. "Long cycles in growth: explorations using new frequency domain techniques with US data," Bank of Finland Research Discussion Papers 6/2010, Bank of Finland.
    21. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    22. Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
    2. Gourieroux, Christian & Jasiak, Joann, 2019. "Robust analysis of the martingale hypothesis," Econometrics and Statistics, Elsevier, vol. 9(C), pages 17-41.
    3. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    4. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    6. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    7. Boya, Christophe M., 2019. "From efficient markets to adaptive markets: Evidence from the French stock exchange," Research in International Business and Finance, Elsevier, vol. 49(C), pages 156-165.
    8. António Portugal Duarte & João Sousa Andrade & Adelaide Duarte, 2009. "Exchange Rate Mean Reversion within a Target Zone: Evidence from a Country on the Periphery of the ERM," GEMF Working Papers 2009-15, GEMF, Faculty of Economics, University of Coimbra.
    9. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    10. Chaido Dritsaki, 2011. "The Random Walk Hypothesis and Correlation in the Visegrad Countries Emerging Stock Markets," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 14(40), pages 25-56, June.
    11. repec:idn:journl:v:1:y:2019:i:sp1:p:1-26 is not listed on IDEAS
    12. Aviral Kumar Tiwari & Rangan Gupta & Juncal Cunado & Xin Sheng, 2020. "Testing the white noise hypothesis in high-frequency housing returns of the United States," Economics and Business Letters, Oviedo University Press, vol. 9(3), pages 178-188.
    13. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    14. Koustas, Zisimos & Lamarche, Jean-François & Serletis, Apostolos, 2008. "Threshold random walks in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 43-48.
    15. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Risk prediction management and weak form market efficiency in Eurozone financial crisis," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 384-393.
    16. Arusha Cooray, 2002. "Interest Rates and Inflationary Expectations: Evidence on the Fisher Effect in Sri Lanka," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 3(2), pages 201-216, September.
    17. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    18. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    19. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    20. Walter Krämer, 1999. "Kointegration von Aktienkursen," Schmalenbach Journal of Business Research, Springer, vol. 51(10), pages 915-936, October.
    21. Katusiime, Lorna & Shamsuddin, Abul & Agbola, Frank W., 2015. "Foreign exchange market efficiency and profitability of trading rules: Evidence from a developing country," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 315-332.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:339-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.