IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/219336.html
   My bibliography  Save this paper

Fear of the coronavirus and the stock markets

Author

Listed:
  • Lyócsa, Štefan
  • Baumöhl, Eduard
  • Výrost, Tomáš
  • Molnár, Peter

Abstract

Since the outbreak of the COVID-19 pandemic, stock markets around the world have experienced unprecedented declines, which have resulted in extremely high stock market uncertainty, measured as price variation. In this paper, we show that during such periods, Google Trends data represent a timely and valuable data source for forecasting price variation. Fear of the coronavirus, as measured by Google searches is predictive of future stock market uncertainty for stock markets around the world. Google searches were also strongly correlated with the evolution of physical contagion (the number of new cases), and with implemented nonpharmaceutical interventions. The effect of pandemic-related policies on investors' attention and fear is thus very well captured by Google Trends data.

Suggested Citation

  • Lyócsa, Štefan & Baumöhl, Eduard & Výrost, Tomáš & Molnár, Peter, 2020. "Fear of the coronavirus and the stock markets," EconStor Preprints 219336, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:219336
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/219336/1/Fear%20of%20the%20coronavirus%20and%20the%20stock%20markets.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    2. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    3. Corbet, Shaen & Hou, Yang & Hu, Yang & Lucey, Brian & Oxley, Les, 2021. "Aye Corona! The contagion effects of being named Corona during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 38(C).
    4. F. Cribari-Neto & S. G. Zarkos, 1999. "Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing," Econometric Reviews, Taylor & Francis Journals, vol. 18(2), pages 211-228.
    5. Jennifer Beam Dowd & Liliana Andriano & David M. Brazel & Valentina Rotondi & Per Block & Xuejie Ding & Yan Liu & Melinda C. Mills, 2020. "Demographic science aids in understanding the spread and fatality rates of COVID-19," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(18), pages 9696-9698, May.
    6. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    7. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    8. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    9. Goodell, John W. & Goutte, Stephane, 2021. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 38(C).
    10. Okorie, David Iheke & Lin, Boqiang, 2021. "Stock markets and the COVID-19 fractal contagion effects," Finance Research Letters, Elsevier, vol. 38(C).
    11. Corbet, Shaen & Larkin, Charles & Lucey, Brian, 2020. "The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies," Finance Research Letters, Elsevier, vol. 35(C).
    12. Sharif, Arshian & Aloui, Chaker & Yarovaya, Larisa, 2020. "COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach," International Review of Financial Analysis, Elsevier, vol. 70(C).
    13. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    14. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    15. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    16. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    17. Brooke Helppie McFall, 2011. "Crash and Wait? The Impact of the Great Recession on the Retirement Plans of Older Americans," American Economic Review, American Economic Association, vol. 101(3), pages 40-44, May.
    18. Smales, Lee A., 2014. "News sentiment and the investor fear gauge," Finance Research Letters, Elsevier, vol. 11(2), pages 122-130.
    19. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    20. Baumöhl, Eduard & Bouri, Elie & Hoang, Thi-Hong-Van & Shahzad, Syed Jawad Hussain & Výrost,Tomáš, 2020. "From physical to financial contagion: the COVID-19 pandemic and increasing systemic risk among banks," EconStor Preprints 218944, ZBW - Leibniz Information Centre for Economics.
    21. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    22. Kim, Neri & Lučivjanská, Katarína & Molnár, Peter & Villa, Roviel, 2019. "Google searches and stock market activity: Evidence from Norway," Finance Research Letters, Elsevier, vol. 28(C), pages 208-220.
    23. Zaremba, Adam & Kizys, Renatas & Aharon, David Y. & Demir, Ender, 2020. "Infected Markets: Novel Coronavirus, Government Interventions, and Stock Return Volatility around the Globe," Finance Research Letters, Elsevier, vol. 35(C).
    24. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    25. Goodell, John W., 2020. "COVID-19 and finance: Agendas for future research," Finance Research Letters, Elsevier, vol. 35(C).
    26. L.A. Smales, 2017. "The importance of fear: investor sentiment and stock market returns," Applied Economics, Taylor & Francis Journals, vol. 49(34), pages 3395-3421, July.
    27. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    28. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    29. Ana I. Bento & Thuy Nguyen & Coady Wing & Felipe Lozano-Rojas & Yong-Yeol Ahn & Kosali Simon, 2020. "Evidence from internet search data shows information-seeking responses to news of local COVID-19 cases," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(21), pages 11220-11222, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyócsa, Štefan & Molnár, Peter, 2020. "Stock market oscillations during the corona crash: The role of fear and uncertainty," Finance Research Letters, Elsevier, vol. 36(C).
    2. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    3. Anastasiou, Dimitris & Ballis, Antonis & Drakos, Konstantinos, 2022. "Constructing a positive sentiment index for COVID-19: Evidence from G20 stock markets," International Review of Financial Analysis, Elsevier, vol. 81(C).
    4. Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    5. Tarchella, Salma & Dhaoui, Abderrazak, 2021. "Chinese jigsaw: Solving the equity market response to the COVID-19 crisis: Do alternative asset provide effective hedging performance?," Research in International Business and Finance, Elsevier, vol. 58(C).
    6. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    7. Ashraf, Badar Nadeem, 2020. "Economic impact of government interventions during the COVID-19 pandemic: International evidence from financial markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    8. Sène, Babacar & Mbengue, Mohamed Lamine & Allaya, Mouhamad M., 2021. "Overshooting of sovereign emerging eurobond yields in the context of COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
    9. Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    10. Demiralay, Sercan & Golitsis, Petros, 2021. "On the dynamic equicorrelations in cryptocurrency market," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 524-533.
    11. Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2021. "Flight-to-quality between global stock and bond markets in the COVID era," Finance Research Letters, Elsevier, vol. 38(C).
    12. Cakici, Nusret & Zaremba, Adam, 2021. "Who should be afraid of infections? Pandemic exposure and the cross-section of stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    13. Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
    14. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    15. Le, Trung Hai & Do, Hung Xuan & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Covid-19 pandemic and tail-dependency networks of financial assets," Finance Research Letters, Elsevier, vol. 38(C).
    16. Sanjay Kumar Rout & Hrushikesh Mallick, 2022. "Sovereign Bond Market Shock Spillover Over Different Maturities: A Journey from Normal to Covid-19 Period," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 697-734, December.
    17. Disli, Mustafa & Nagayev, Ruslan & Salim, Kinan & Rizkiah, Siti K. & Aysan, Ahmet F., 2021. "In search of safe haven assets during COVID-19 pandemic: An empirical analysis of different investor types," Research in International Business and Finance, Elsevier, vol. 58(C).
    18. Guo, Xiaochun & Lu, Fengbin & Wei, Yunjie, 2021. "Capture the contagion network of bitcoin – Evidence from pre and mid COVID-19," Research in International Business and Finance, Elsevier, vol. 58(C).
    19. Díaz, Fernando & Henríquez, Pablo A. & Winkelried, Diego, 2022. "Stock market volatility and the COVID-19 reproductive number," Research in International Business and Finance, Elsevier, vol. 59(C).
    20. Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.

    More about this item

    Keywords

    Coronavirus; Stock market; Uncertainty; Panic; Google Trends;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:219336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.