IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v11y2014i2p122-130.html
   My bibliography  Save this article

News sentiment and the investor fear gauge

Author

Listed:
  • Smales, Lee A.

Abstract

This note examines the relationship between aggregate news sentiment and changes in the implied volatility index (VIX). A significant negative contemporaneous relationship between changes in VIX and news sentiment is discovered. The relationship is asymmetric whereby changes in VIX are larger following the release of negative news items.

Suggested Citation

  • Smales, Lee A., 2014. "News sentiment and the investor fear gauge," Finance Research Letters, Elsevier, vol. 11(2), pages 122-130.
  • Handle: RePEc:eee:finlet:v:11:y:2014:i:2:p:122-130
    DOI: 10.1016/j.frl.2013.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612313000354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2013.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    2. Jeff Fleming & Barbara Ostdiek & Robert E. Whaley, 1995. "Predicting stock market volatility: A new measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 265-302, May.
    3. repec:bla:jfinan:v:43:y:1988:i:2:p:467-91 is not listed on IDEAS
    4. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    5. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
    2. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    3. Ferdinand Graf, 2011. "Mechanically Extracted Company Signals and their Impact on Stock and Credit Markets," Working Paper Series of the Department of Economics, University of Konstanz 2011-18, Department of Economics, University of Konstanz.
    4. Lee A. Smales, 2016. "Time-varying relationship of news sentiment, implied volatility and stock returns," Applied Economics, Taylor & Francis Journals, vol. 48(51), pages 4942-4960, November.
    5. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    6. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    7. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    8. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    9. David E Allen & Michael McAleer & Abhay K Singh, 2017. "An entropy-based analysis of the relationship between the DOW JONES Index and the TRNA Sentiment series," Applied Economics, Taylor & Francis Journals, vol. 49(7), pages 677-692, February.
    10. Wei, Yu-Chen & Lu, Yang-Cheng & Chen, Jen-Nan & Hsu, Yen-Ju, 2017. "Informativeness of the market news sentiment in the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 158-181.
    11. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    12. Soumya Mukhopadhyay, 2018. "Opinion mining in management research: the state of the art and the way forward," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 221-250, June.
    13. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
    14. Liu, Jun & Wu, Kai & Zhou, Ming, 2023. "News tone, investor sentiment, and liquidity premium," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 167-181.
    15. Justina Deveikyte & Helyette Geman & Carlo Piccari & Alessandro Provetti, 2020. "A Sentiment Analysis Approach to the Prediction of Market Volatility," Papers 2012.05906, arXiv.org.
    16. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
    17. David E. Allen & Michael McAleer & Abhay K. Singh, 2014. "Machine news and volatility: The Dow Jones Industrial Average and the TRNA sentiment series," Working Papers in Economics 14/04, University of Canterbury, Department of Economics and Finance.
    18. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
    19. Smales, Lee A., 2014. "News sentiment in the gold futures market," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 275-286.
    20. Katherine B. Ensor & Yu Han & Barbara Ostdiek & Stuart M. Turnbull, 2020. "Dynamic jump intensities and news arrival in oil futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 21(4), pages 292-325, July.

    More about this item

    Keywords

    News sentiment; VIX; Implied volatility; Stock market; Investor behaviour;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • G1 - Financial Economics - - General Financial Markets
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:11:y:2014:i:2:p:122-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.