IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20150090.html
   My bibliography  Save this paper

Daily Market News Sentiment and Stock Prices

Author

Listed:
  • David E. Allen

    (Centre for Applied Financial Studies, Adelaide, University of South Australia, and University of Sydney, Australia)

  • Michael McAleer

    (National Tsing Hua University, Taiwan, Erasmus University Rotterdam, the Netherlands, and Complutense University of Madrid, Spain)

  • Abhay K. Singh

    (Edith Cowan University, Perth, Australia)

Abstract

In recent years there has been a tremendous growth in the influx of news related to traded assets in international financial markets. This financial news is now available via print media but also through real-time online sources such as internet news and social media sources. The increase in the availability of financial news and investor’s ease of access to it has a potentially significant impact on market price formation as these news items are swiftly transformed into investors sentiment which in turn drives prices. Various commercial agencies have started developing their own financial news data sets which are used by investors and traders to support their algorithmic trading strategies. Thomson Reuters News Analytics (TRNA)1 is one such data set. In this study we use the TRNA data set to construct a series of daily sentiment scores for Dow Jones Industrial Average (DJIA) stock index component companies. We use these daily DJIA market sentiment scores to study the influence of financial news sentiment scores on the stock prices of these companies using a multi-factor model. We use an augmented Fama French Three Factor Model to evaluate the additional effects of financial news sentiment on stock prices in the context of this model. Our results suggest that even when market factors are taken into account, sentiment scores have a significant effect on Dow Jones constituent company returns and that lagged daily sentiment scores are often significant, suggesting that information compounded in these scores is not immediately reflected in security prices and related return series.

Suggested Citation

  • David E. Allen & Michael McAleer & Abhay K. Singh, 2015. "Daily Market News Sentiment and Stock Prices," Tinbergen Institute Discussion Papers 15-090/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20150090
    as

    Download full text from publisher

    File URL: http://papers.tinbergen.nl/15090.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. " The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    3. Smales, Lee A., 2014. "News sentiment in the gold futures market," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 275-286.
    4. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross-Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    5. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    6. Brad M. Barber & Terrance Odean, 2001. "Boys will be Boys: Gender, Overconfidence, and Common Stock Investment," The Quarterly Journal of Economics, Oxford University Press, vol. 116(1), pages 261-292.
    7. Andreas Storkenmaier & Martin Wagener & Christof Weinhardt, 2012. "Public information in fragmented markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(2), pages 179-215, June.
    8. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    9. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    10. Joseph E. Engelberg & Christopher A. Parsons, 2011. "The Causal Impact of Media in Financial Markets," Journal of Finance, American Finance Association, vol. 66(1), pages 67-97, February.
    11. Bhattacharya, Utpal & Galpin, Neal & Ray, Rina & Yu, Xiaoyun, 2009. "The Role of the Media in the Internet IPO Bubble," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(03), pages 657-682, June.
    12. Paul C. Tetlock, 2010. "Does Public Financial News Resolve Asymmetric Information?," Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3520-3557.
    13. Paul C. Tetlock & Maytal Saar-Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    14. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    15. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    16. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. Allen & Michael McAleer & Abhay K. Singh, 2014. "Machine news and volatility: The Dow Jones Industrial Average and the TRNA sentiment series," Working Papers in Economics 14/04, University of Canterbury, Department of Economics and Finance.
    2. David E Allen & Michael McAleer & Abhay K Singh, 2017. "An entropy-based analysis of the relationship between the DOW JONES Index and the TRNA Sentiment series," Applied Economics, Taylor & Francis Journals, vol. 49(7), pages 677-692, February.
    3. repec:gam:jecnmx:v:5:y:2017:i:3:p:35-:d:108901 is not listed on IDEAS

    More about this item

    Keywords

    Sentiment Analysis; Financial News; Factor Models; Asset Pricing;

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20150090. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900). General contact details of provider: http://edirc.repec.org/data/tinbenl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.