IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v68y2025i6d10.1007_s00181-025-02720-5.html
   My bibliography  Save this article

Variance and skewness in density forecasts: assessing world GDP growth

Author

Listed:
  • Fabian Mendez Ramos

    (World Bank Group)

Abstract

This paper introduces a novel methodology, Bayesian cross-entropy forecasting (BCEF), for predicting the variance and skewness of density forecasts. BCEF evaluates the first-order effects of risk factors on the variability and asymmetry of predictive distributions, enabling a clear assessment of a forecasted variable’s upside and downside risks. A key innovation of BCEF lies in its ability to decompose variance and skewness within density forecasts, providing a robust framework for uncertainty analysis. By leveraging the two-piece normal distribution, BCEF generates asymmetric density forecasts incorporating forward-looking information from expectation surveys and statistical outputs of predictive models. The methodology's effectiveness is demonstrated through its application to world GDP growth forecasts using data from October 2005 to August 2015. The results, evaluated using the continuous-ranked probability score, show that BCEF fan charts are more accurate and consistently outperform standard symmetric and calibrated asymmetric density forecast benchmarks.

Suggested Citation

  • Fabian Mendez Ramos, 2025. "Variance and skewness in density forecasts: assessing world GDP growth," Empirical Economics, Springer, vol. 68(6), pages 2897-2932, June.
  • Handle: RePEc:spr:empeco:v:68:y:2025:i:6:d:10.1007_s00181-025-02720-5
    DOI: 10.1007/s00181-025-02720-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-025-02720-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-025-02720-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Aretz & David A. Peel, 2010. "Spreads versus professional forecasters as predictors of future output change," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 517-522.
    2. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    3. David Bessler & Robert Ruffley, 2004. "Prequential analysis of stock market returns," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 399-412.
    4. Olivier J. Blanchard & Marianna Riggi, 2013. "WHY ARE THE 2000s SO DIFFERENT FROM THE 1970s? A STRUCTURAL INTERPRETATION OF CHANGES IN THE MACROECONOMIC EFFECTS OF OIL PRICES," Journal of the European Economic Association, European Economic Association, vol. 11(5), pages 1032-1052, October.
    5. Kling, John L, 1987. "Predicting the Turning Points of Business and Economic Time Series," The Journal of Business, University of Chicago Press, vol. 60(2), pages 201-238, April.
    6. Olivier J. Blanchard & Jordi Gali, 2007. "The Macroeconomic Effects of Oil Shocks: Why are the 2000s So Different from the 1970s?," NBER Working Papers 13368, National Bureau of Economic Research, Inc.
    7. Walter Krämer, 2006. "Evaluating probability forecasts in terms of refinement and strictly proper scoring rules," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 223-226.
    8. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    9. Matthew J. Kotchen & James H. Stock & Catherine D. Wolfram, 2019. "Introduction to "Environmental and Energy Policy and the Economy"," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 1, pages 3-7, National Bureau of Economic Research, Inc.
    10. World Bank, 2009. "Global Economic Prospects 2009 : Commodities at the Crossroads," World Bank Publications - Books, The World Bank Group, number 2581.
    11. Kling, John L & Bessler, David A, 1989. "Calibration-Based Predictive Distributions: An Application of Prequential Analysis to Interest Rates, Money, Prices, and Output," The Journal of Business, University of Chicago Press, vol. 62(4), pages 477-499, October.
    12. Jay Choi, Jongmoo & Hauser, Shmuel & Kopecky, Kenneth J., 1999. "Does the stock market predict real activity? Time series evidence from the G-7 countries," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1771-1792, December.
    13. Fischer, Stanley & Merton, Robert C., 1984. "Macroeconomics and finance: The role of the stock market," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 21(1), pages 57-108, January.
    14. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    15. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    16. World Bank, 2008. "Global Economic Prospects 2008 : Technology Diffusion in the Developing World," World Bank Publications - Books, The World Bank Group, number 6335.
    17. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    18. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    19. Go, Delfin S. & Lofgren, Hans & Ramos, Fabian Mendez & Robinson, Sherman, 2016. "Estimating parameters and structural change in CGE models using a Bayesian cross-entropy estimation approach," Economic Modelling, Elsevier, vol. 52(PB), pages 790-811.
    20. Fama, Eugene F, 1981. "Stock Returns, Real Activity, Inflation, and Money," American Economic Review, American Economic Association, vol. 71(4), pages 545-565, September.
    21. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    22. J. Eric Bickel, 2007. "Some Comparisons among Quadratic, Spherical, and Logarithmic Scoring Rules," Decision Analysis, INFORMS, vol. 4(2), pages 49-65, June.
    23. Robert Rich & Joseph Tracy, 2010. "The Relationships among Expected Inflation, Disagreement, and Uncertainty: Evidence from Matched Point and Density Forecasts," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 200-207, February.
    24. Hassapis, Christis & Kalyvitis, Sarantis, 2002. "Investigating the links between growth and real stock price changes with empirical evidence from the G-7 economies," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 543-575.
    25. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    26. Kao, Yi-Cheng & Kuan, Chung-Ming & Chen, Shikuan, 2013. "Testing the predictive power of the term structure without data snooping bias," Economics Letters, Elsevier, vol. 121(3), pages 546-549.
    27. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    28. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    29. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    30. Tsouma, Ekaterini, 2009. "Stock returns and economic activity in mature and emerging markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(2), pages 668-685, May.
    31. Rebeca Jimenez-Rodriguez & Marcelo Sanchez, 2005. "Oil price shocks and real GDP growth: empirical evidence for some OECD countries," Applied Economics, Taylor & Francis Journals, vol. 37(2), pages 201-228.
    32. Nabil I. Al-Najjar & Eran Shmaya, 2015. "Uncertainty and Disagreement in Equilibrium Models," Journal of Political Economy, University of Chicago Press, vol. 123(4), pages 778-808.
    33. David A. Bessler & John L. Kling, 1990. "Prequential Analysis of Cattle Prices," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(1), pages 95-106, March.
    34. World Bank, 2005. "Global Economic Prospects 2005 : Trade, Regionalism and Development," World Bank Publications - Books, The World Bank Group, number 14783.
    35. Casillas-Olvera, Gabriel & Bessler, David A., 2006. "Probability forecasting and central bank accountability," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 223-234, February.
    36. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    37. Robert G. Nelson & David A. Bessler, 1989. "Subjective Probabilities and Scoring Rules: Experimental Evidence," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 363-369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    3. Komain Jiranyakul, 2013. "The Predictive Role of Stock Market Return for Real Activity in Thailand," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(3), pages 317-328.
    4. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    5. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    6. Lyócsa, Štefan, 2014. "Growth-returns nexus: Evidence from three Central and Eastern European countries," Economic Modelling, Elsevier, vol. 42(C), pages 343-355.
    7. C. Alexander & M. Coulon & Y. Han & X. Meng, 2024. "Evaluating the discrimination ability of proper multi-variate scoring rules," Annals of Operations Research, Springer, vol. 334(1), pages 857-883, March.
    8. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    9. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    10. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.
    11. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    12. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    13. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    14. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    15. Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022. "Score-based calibration testing for multivariate forecast distributions," Papers 2211.16362, arXiv.org, revised Dec 2023.
    16. Lyócsa, Štefan & Výrost, Tomáš & Plíhal, Tomáš, 2021. "A tale of tails : New evidence on the growth-return nexus," Finance Research Letters, Elsevier, vol. 38(C).
    17. Gergely Ganics & Barbara Rossi & Tatevik Sekhposyan, 2024. "From Fixed‐Event to Fixed‐Horizon Density Forecasts: Obtaining Measures of Multihorizon Uncertainty from Survey Density Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(7), pages 1675-1704, October.
    18. Krüger, Fabian & Pavlova, Lora, 2019. "Quantifying subjective oncertainty in survey expectations," Working Papers 0664, University of Heidelberg, Department of Economics.
    19. David G. McMillan, 2021. "Predicting GDP growth with stock and bond markets: Do they contain different information?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3651-3675, July.
    20. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:68:y:2025:i:6:d:10.1007_s00181-025-02720-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.