IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v47y2014i1p365-388.html
   My bibliography  Save this article

Evaluating FOMC forecast ranges: an interval data approach

Author

Listed:
  • Henning Fischer
  • Marta García-Bárzana
  • Peter Tillmann
  • Peter Winker

Abstract

The Federal Open Market Committee (FOMC) of the U.S. Federal Reserve publishes the range of members’ forecasts for key macroeconomic variables, but not the distribution of forecasts within this range. To evaluate these projections, previous papers compare the midpoint of the range with the realized outcome. This paper proposes an alternative approach to forecast evaluation that takes account of the interval nature of projections. It is shown that using the conventional Mincer–Zarnowitz approach to evaluate FOMC forecasts misses important information contained in the width of the forecast interval. This additional information plays a minor role at short forecast horizons but turns out to be of sometimes crucial importance for longer-horizon forecasts. For 18-month-ahead forecasts, the variation of members’ projections contains information that is more relevant for explaining future inflation than information embodied in the midpoint. Likewise, when longer-range forecasts for real GDP growth and the unemployment rate are considered, the width of the forecast interval comprises information over and above the one given by the midpoint alone. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Henning Fischer & Marta García-Bárzana & Peter Tillmann & Peter Winker, 2014. "Evaluating FOMC forecast ranges: an interval data approach," Empirical Economics, Springer, vol. 47(1), pages 365-388, August.
  • Handle: RePEc:spr:empeco:v:47:y:2014:i:1:p:365-388
    DOI: 10.1007/s00181-013-0736-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-013-0736-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-013-0736-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    2. Sinclair, Tara M. & Joutz, Fred & Stekler, H.O., 2010. "Can the Fed predict the state of the economy?," Economics Letters, Elsevier, vol. 108(1), pages 28-32, July.
    3. David Romer, 2010. "A New Data Set on Monetary Policy: The Economic Forecasts of Individual Members of the FOMC," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(5), pages 951-957, August.
    4. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    5. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    6. Blanco-Fernández, Angela & Corral, Norberto & González-Rodríguez, Gil, 2011. "Estimation of a flexible simple linear model for interval data based on set arithmetic," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2568-2578, September.
    7. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270, National Bureau of Economic Research, Inc.
    8. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    9. Athanasios Orphanides & Volker W. Wieland, 2008. "Economic projections and rules of thumb for monetary policy," Review, Federal Reserve Bank of St. Louis, vol. 90(Jul), pages 307-324.
    10. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    11. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    12. Antonello D'Agostino & Karl Whelan, 2008. "Federal Reserve Information During the Great Moderation," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 609-620, 04-05.
    13. Tillmann, Peter, 2011. "Strategic forecasting on the FOMC," European Journal of Political Economy, Elsevier, vol. 27(3), pages 547-553, September.
    14. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    15. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    16. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    17. David L. Reifschneider & Peter Tulip, 2007. "Gauging the uncertainty of the economic outlook from historical forecasting errors," Finance and Economics Discussion Series 2007-60, Board of Governors of the Federal Reserve System (U.S.).
    18. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    19. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
    20. Glenn D. Rudebusch, 2008. "Publishing FOMC economic forecasts," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue jan18.
    21. Gavin, William T. & Mandal, Rachel J., 2003. "Evaluating FOMC forecasts," International Journal of Forecasting, Elsevier, vol. 19(4), pages 655-667.
    22. William T. Gavin, 2003. "FOMC forecast: is all the information in the central tendency?," Review, Federal Reserve Bank of St. Louis, vol. 85(May), pages 27-46.
    23. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    24. Kevin Dowd, 2004. "FOMC Forecasts of Macroeconomic Risks," Occasional Papers 12, Industrial Economics Division, revised 10 Jan 2004.
    25. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    26. Christina D. Romer & David H. Romer, 2008. "The FOMC versus the Staff: Where Can Monetary Policymakers Add Value?," American Economic Review, American Economic Association, vol. 98(2), pages 230-235, May.
    27. Gamber, Edward N. & Smith, Julie K., 2009. "Are the Fed's inflation forecasts still superior to the private sector's?," Journal of Macroeconomics, Elsevier, vol. 31(2), pages 240-251, June.
    28. William T. Gavin & Geetanjali Pande, 2008. "FOMC consensus forecasts," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 149-164.
    29. Michael W. McCracken, 2010. "Using FOMC forecasts to forecast the economy," Economic Synopses, Federal Reserve Bank of St. Louis.
    30. Chanont Banternghansa & Michael W. McCracken, 2009. "Forecast disagreement among FOMC members," Working Papers 2009-059, Federal Reserve Bank of St. Louis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natsuki Arai, 2016. "Evaluating the Efficiency of the FOMC's New Economic Projections," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(5), pages 1019-1049, August.
    2. repec:ntu:ntugeo:vol2-iss1-14-054 is not listed on IDEAS
    3. Angela Blanco-Fernández & Peter Winker, 2016. "Data generation processes and statistical management of interval data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 475-494, October.
    4. Gamber, Edward N. & Liebner, Jeffrey P. & Smith, Julie K., 2015. "The distribution of inflation forecast errors," Journal of Policy Modeling, Elsevier, vol. 37(1), pages 47-64.
    5. Yoichi Tsuchiya, 2021. "The value added of the Bank of Japan's range forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 817-833, August.
    6. Bratu, Mihaela, 2013. "The Assessment And Improvement Of The Accuracy For The Forecast Intervals," Working Papers of Macroeconomic Modelling Seminar 132602, Institute for Economic Forecasting.
    7. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    8. Mihaela Simionescu, 2014. "M1 and M2 indicators- new proposed measures for the global accuracy of forecast intervals," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 54-59, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoichi Tsuchiya, 2021. "The value added of the Bank of Japan's range forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 817-833, August.
    2. Paul Hubert, 2015. "The Influence and Policy Signalling Role of FOMC Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(5), pages 655-680, October.
    3. Christian Pierdzioch & Jan-Christoph Rülke & Peter Tillmann, 2013. "Using forecasts to uncover the loss function of FOMC members," MAGKS Papers on Economics 201302, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    4. Carola Conces Binder & Rodrigo Sekkel, 2024. "Central bank forecasting: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 38(2), pages 342-364, April.
    5. Rülke, Jan-Christoph & Tillmann, Peter, 2011. "Do FOMC members herd?," Economics Letters, Elsevier, vol. 113(2), pages 176-179.
    6. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.
    7. Gamber, Edward N. & Liebner, Jeffrey P. & Smith, Julie K., 2015. "The distribution of inflation forecast errors," Journal of Policy Modeling, Elsevier, vol. 37(1), pages 47-64.
    8. Tillmann, Peter, 2011. "Strategic forecasting on the FOMC," European Journal of Political Economy, Elsevier, vol. 27(3), pages 547-553, September.
    9. Sheng, Xuguang (Simon), 2015. "Evaluating the economic forecasts of FOMC members," International Journal of Forecasting, Elsevier, vol. 31(1), pages 165-175.
    10. Guido Schultefrankenfeld, 2020. "Appropriate monetary policy and forecast disagreement at the FOMC," Empirical Economics, Springer, vol. 58(1), pages 223-255, January.
    11. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    12. Tillmann, Peter, 2010. "The Fed's perceived Phillips curve: Evidence from individual FOMC forecasts," Journal of Macroeconomics, Elsevier, vol. 32(4), pages 1008-1013, December.
    13. El-Shagi, Makram & Giesen, Sebastian & Jung, Alexander, 2012. "Does Central Bank Staff Beat Private Forecasters?," IWH Discussion Papers 5/2012, Halle Institute for Economic Research (IWH).
    14. El-Shagi, Makram & Giesen, Sebastian & Jung, Alexander, 2016. "Revisiting the relative forecast performances of Fed staff and private forecasters: A dynamic approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 313-323.
    15. Chanont Banternghansa & Michael W. McCracken, 2009. "Forecast disagreement among FOMC members," Working Papers 2009-059, Federal Reserve Bank of St. Louis.
    16. Jung, Alexander & El-Shagi, Makram & Giesen, Sebastian, 2014. "Does the federal reserve staff still beat private forecasters?," Working Paper Series 1635, European Central Bank.
    17. Bespalova, Olga, 2020. "GDP forecasts: Informational asymmetry of the SPF and FOMC minutes," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1531-1540.
    18. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    19. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    20. Barbara Rossi & Tatevik Sekhposyan, 2016. "Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.

    More about this item

    Keywords

    Forecast evaluation; Interval data; Federal Reserve; Monetary policy; C53; E37; E58;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:47:y:2014:i:1:p:365-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.