IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v37y2009i2p287-301.html
   My bibliography  Save this article

A comprehensive German business cycle chronology

Author

Listed:
  • Beate Schirwitz

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Beate Schirwitz, 2009. "A comprehensive German business cycle chronology," Empirical Economics, Springer, vol. 37(2), pages 287-301, October.
  • Handle: RePEc:spr:empeco:v:37:y:2009:i:2:p:287-301
    DOI: 10.1007/s00181-008-0233-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-008-0233-y
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Harding, Don & Pagan, Adrian, 2003. "Rejoinder to James Hamilton," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1695-1698, July.
    3. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    4. Artis, Michael J & Kontolemis, Zenon G & Osborn, Denise R, 1997. "Business Cycles for G7 and European Countries," The Journal of Business, University of Chicago Press, vol. 70(2), pages 249-279, April.
    5. Fritsche Ulrich & Kuzin Vladimir, 2005. "Prediction of Business Cycle Turning Points in Germany / Prognose konjunktureller Wendepunkte in Deutschland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(1), pages 22-43, February.
    6. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    7. Harding, Don & Pagan, Adrian, 2003. "A comparison of two business cycle dating methods," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1681-1690, July.
    8. Andrew C. Harvey & Thomas M. Trimbur, 2003. "General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 244-255, May.
    9. Robert Breunig & Serinah Najarian & Adrian Pagan, 2003. "Specification Testing of Markov Switching Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 703-725, December.
    10. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    11. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    12. Don Harding & Adrian Pagan, 1999. "Knowing the Cycle," Melbourne Institute Working Paper Series wp1999n12, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    13. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    14. Adrian Pagan & Don Harding, 2005. "A suggested framework for classifying the modes of cycle research," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 151-159.
    15. Boldin, Michael D, 1994. "Dating Turning Points in the Business Cycle," The Journal of Business, University of Chicago Press, vol. 67(1), pages 97-131, January.
    16. James D. Hamilton & Baldev Raj, 2002. "New directions in business cycle research and financial analysis," Empirical Economics, Springer, vol. 27(2), pages 149-162.
    17. Bengoechea, Pilar & Camacho, Maximo & Perez-Quiros, Gabriel, 2006. "A useful tool for forecasting the Euro-area business cycle phases," International Journal of Forecasting, Elsevier, vol. 22(4), pages 735-749.
    18. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    19. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    20. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Dating Business Cycles: A Methodological Contribution with an Application to the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(4), pages 537-565, September.
    21. Kholodilin, Konstantin A. & Yao, Vincent W., 2005. "Measuring and predicting turning points using a dynamic bi-factor model," International Journal of Forecasting, Elsevier, vol. 21(3), pages 525-537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    2. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
    3. Klaus Wohlrabe, 2011. "Konstruktion von Indikatoren zur Analyse der wirtschaftlichen Aktivität in den Dienstleistungsbereichen," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 55, October.
    4. Vitor Castro, 2015. "The Portuguese business cycle: chronology and duration dependence," Empirical Economics, Springer, vol. 49(1), pages 325-342, August.
    5. Martyna Marczak & Thomas Beissinger, 2013. "Real wages and the business cycle in Germany," Empirical Economics, Springer, vol. 44(2), pages 469-490, April.
    6. Vítor Castro, 2011. "The Portuguese Business Cycle: Chronology and Duration Dependence," NIPE Working Papers 11/2011, NIPE - Universidade do Minho.
    7. Vitor Castro, 2013. "The Portuguese stock market cycle: Chronology and duration dependence," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(1), pages 1-23.
    8. Francis W. Ahking, 2015. "Measuring U.S. Business Cycles: A Comparison of Two Methods and Two Indicators of Economic Activities (With Appendix A)," Working papers 2015-06, University of Connecticut, Department of Economics.
    9. Francis W. Ahking, 2013. "Measuring U.S. Business Cycles: A Comparison of Two Methods and Two Indicators of Economic Activities," Working papers 2013-10, University of Connecticut, Department of Economics.
    10. repec:zbw:svrwjg:201718 is not listed on IDEAS
    11. Westerheide Nina & Kauermann Goeran, 2012. "Flexible Modelling of Duration of Unemployment Using Functional Hazard Models and Penalized Splines: A Case Study Comparing Germany and the UK," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
    12. Nina Westerheide & Goran Kauermann, 2014. "Unemployed in Germany: Factors Influencing the Risk of Losing the Job," Research in World Economy, Research in World Economy, Sciedu Press, vol. 5(2), pages 43-55, September.
    13. Beate Schirwitz, 2013. "Business Fluctuations, Job Flows and Trade Unions - Dynamics in the Economy," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 47.
    14. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    15. Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo Group Munich.
    16. Klinger, Sabine & Weber, Enzo, 2015. "GDP-Employment Decoupling and the Productivity Puzzle in Germany," University of Regensburg Working Papers in Business, Economics and Management Information Systems 485, University of Regensburg, Department of Economics.
    17. Thomas Theobald, 2012. "Real-time Markov Switching and Leading Indicators in Times of the Financial Crisis," IMK Working Paper 98-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    18. Klaus Wohlrabe, 2012. "Prognose des Dienstleistungssektors in Deutschland," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(01), pages 31-39, January.
    19. Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions in Germany With Boosted Regression Trees," Macroeconomics and Finance Series 201505, Hamburg University, Department Wirtschaft und Politik.
    20. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland - Teil II: Die Zyklendatierung," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(14), pages 24-31, July.

    More about this item

    Keywords

    Business cycles; Turning points; Business cycle dating algorithm; Non-parametric; Markov-switching; E32; C14; C22;

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:37:y:2009:i:2:p:287-301. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.