IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v34y2008i3p493-524.html
   My bibliography  Save this article

Monitoring and forecasting annual public deficit every month: the case of France

Author

Listed:
  • Andrea Silvestrini
  • Matteo Salto
  • Laurent Moulin
  • David Veredas

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrea Silvestrini & Matteo Salto & Laurent Moulin & David Veredas, 2008. "Monitoring and forecasting annual public deficit every month: the case of France," Empirical Economics, Springer, vol. 34(3), pages 493-524, June.
  • Handle: RePEc:spr:empeco:v:34:y:2008:i:3:p:493-524
    DOI: 10.1007/s00181-007-0132-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-007-0132-7
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Santos Silva, J. M. C. & Cardoso, F. N., 2001. "The Chow-Lin method using dynamic models," Economic Modelling, Elsevier, vol. 18(2), pages 269-280, April.
    3. Bretschneider, Stuart I. & Gorr, Wilpen L. & Grizzle, Gloria & Klay, Earle, 1989. "Political and organizational influences on the accuracy of forecasting state government revenues," International Journal of Forecasting, Elsevier, vol. 5(3), pages 307-319.
    4. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    5. William W. S. Wei, 1978. "Some Consequences of Temporal Aggregation in Seasonal Time Series Models," NBER Chapters,in: Seasonal Analysis of Economic Time Series, pages 433-448 National Bureau of Economic Research, Inc.
    6. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    7. Gonzalo Camba-Mendez & Ana Lamo, 2004. "Short-term monitoring of fiscal policy discipline," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 247-265.
    8. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," CORE Discussion Papers 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Palm, Franz C & Nijman, Theo E, 1984. "Missing Observations in the Dynamic Regression Model," Econometrica, Econometric Society, vol. 52(6), pages 1415-1435, November.
    10. Yue Fang & Sergio G. Koreisha, 2004. "Updating ARMA predictions for temporal aggregates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 275-296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa Leal & Javier J. Pérez & Mika Tujula & Jean-Pierre Vidal, 2008. "Fiscal Forecasting: Lessons from the Literature and Challenges," Fiscal Studies, Institute for Fiscal Studies, vol. 29(3), pages 347-386, September.
    2. Onorante, Luca & Pedregal, Diego J. & Pérez, Javier J. & Signorini, Sara, 2010. "The usefulness of infra-annual government cash budgetary data for fiscal forecasting in the euro area," Journal of Policy Modeling, Elsevier, vol. 32(1), pages 98-119, January.
    3. Diego J. Pedregal & Javier J. Pérez & A. Jesús Sánchez-Fuentes, 2014. "A toolkit to strengthen government budget surveillance," Working Papers 1416, Banco de España;Working Papers Homepage.
    4. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    5. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
    6. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    7. Laura Carabotta, 2014. "Which Agency and Which Period is The Best? Analyzing National and International Fiscal Forecasts in Italy," International Journal of Economic Sciences, University of Economics, Prague, vol. 2014(1), pages 27-46.
    8. Teresa Leal Linares & Javier J. Pérez, 2009. "Un sistema ARIMA con agregación temporal para la previsión y el seguimiento del déficit del Estado," Hacienda Pública Española, IEF, vol. 190(3), pages 27-58, June.
    9. Ramirez, Octavio A., 2011. "Conclusive Evidence on the Benefits of Temporal Disaggregation to Improve the Precision of Time Series Model Forecasts," Faculty Series 113520, University of Georgia, Department of Agricultural and Applied Economics.
    10. Paredes, Joan & Pedregal, Diego J. & Pérez, Javier J., 2009. "A quarterly fiscal database for the euro area based on intra-annual fiscal information," Working Paper Series 1132, European Central Bank.
    11. Paredes-Lodeiro, Joan & Pérez, Javier J & Pérez-Quirós, Gabriel, 2015. "Fiscal targets. A guide to forecasters?," CEPR Discussion Papers 10553, C.E.P.R. Discussion Papers.
    12. Paredes, Joan & Pedregal, Diego J. & Pérez, Javier J., 2014. "Fiscal policy analysis in the euro area: Expanding the toolkit," Journal of Policy Modeling, Elsevier, vol. 36(5), pages 800-823.
    13. Diego J. Pedregal & Javier J. Pérez & Antonio Sánchez Fuentes, 2014. "A Tookit to strengthen Government," Hacienda Pública Española, IEF, vol. 211(4), pages 117-146, December.
    14. Teresa Leal & Diego Pedregal & Javier Pérez, 2011. "Short-term monitoring of the Spanish government balance," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(1), pages 97-119, March.

    More about this item

    Keywords

    French state deficit; Temporal aggregation; Intra-annual; Forecasting; C22; C53; E62; H60;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy
    • H60 - Public Economics - - National Budget, Deficit, and Debt - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:34:y:2008:i:3:p:493-524. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.