IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Conclusive Evidence on the Benefits of Temporal Disaggregation to Improve the Precision of Time Series Model Forecasts

  • Ramirez, Octavio A.

Simulation methods are used to measure the expected differentials between the Mean Square Errors of the forecasts from models based on temporally disaggregated versus aggregated data. This allows for novel comparisons including long-order ARMA models, such as those expected with weekly data, under realistic conditions where the parameter values have to be estimated. The ambivalence of past empirical evidence on the benefits of disaggregation is addressed by analyzing four different economic time series for which relatively large sample sizes are available. Because of this, a sufficient number of predictions can be considered to obtain conclusive results from out-of-sample forecasting contests. The validity of the conventional method for inferring the order of the aggregated models is revised.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://purl.umn.edu/113520
Download Restriction: no

Paper provided by University of Georgia, Department of Agricultural and Applied Economics in its series Faculty Series with number 113520.

as
in new window

Length:
Date of creation: Aug 2011
Date of revision:
Handle: RePEc:ags:ugeofs:113520
Contact details of provider: Postal: Conner Hall, Athens, GA 30602
Phone: (706) 542-2481
Fax: (706) 542-0739
Web page: http://www.caes.uga.edu/departments/agecon/index.html

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dimitris Georgoutsos & George Kouretas & Dikaios Tserkezos, . "Temporal Aggregation In Structural Var Models," Working Papers 9505, University of Crete, Department of Economics.
  2. SILVESTRINI, Andrea & SALTo, Matteo & MOULIN, Laurent & VEREDAS, David, . "Monitoring and forecasting annual public deficit every month: the case of France," CORE Discussion Papers RP -2019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Brewer, K. R. W., 1973. "Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models," Journal of Econometrics, Elsevier, vol. 1(2), pages 133-154, June.
  4. Rossana, Robert J & Seater, John J, 1995. "Temporal Aggregation and Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 441-51, October.
  5. Andrea Silvestrini & David Veredas, 2008. "Temporal aggregation of univariate and multivariate time series models: A survey," Temi di discussione (Economic working papers) 685, Bank of Italy, Economic Research and International Relations Area.
  6. Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
  7. Tiao, G. C. & Guttman, Irwin, 1980. "Forecasting contemporal aggregates of multiple time series," Journal of Econometrics, Elsevier, vol. 12(2), pages 219-230, February.
  8. Den Butter, F. A. G., 1976. "The use of monthly and quarterly data in an ARMA model," Journal of Econometrics, Elsevier, vol. 4(4), pages 311-324, November.
  9. Nijman, T.E. & Palm, F.C., 1990. "Predictive accuracy gain from disaggregate sampling in ARIMA models," Other publications TiSEM 50a68aea-1b30-497d-b111-6, Tilburg University, School of Economics and Management.
  10. Yue Fang & Sergio G. Koreisha, 2004. "Updating ARMA predictions for temporal aggregates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 275-296.
  11. repec:ner:tilbur:urn:nbn:nl:ui:12-153276 is not listed on IDEAS
  12. Peter C.B. Phillips & Sam Ouliaris & Joon Y. Park, 1988. "Testing for a Unit Root in the Presence of a Maintained Trend," Cowles Foundation Discussion Papers 880, Cowles Foundation for Research in Economics, Yale University.
  13. Man, K.S. & Tiao, G.C., 2006. "Aggregation effect and forecasting temporal aggregates of long memory processes," International Journal of Forecasting, Elsevier, vol. 22(2), pages 267-281.
  14. Wei, William W. S., 1978. "The effect of temporal aggregation on parameter estimation in distributed lag model," Journal of Econometrics, Elsevier, vol. 8(2), pages 237-246, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ags:ugeofs:113520. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.