IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v5y2023i1d10.1007_s42521-022-00050-0.html
   My bibliography  Save this article

DeepVaR: a framework for portfolio risk assessment leveraging probabilistic deep neural networks

Author

Listed:
  • Georgios Fatouros

    (University of Piraeus
    Innov-Acts Ltd)

  • Georgios Makridis

    (University of Piraeus)

  • Dimitrios Kotios

    (University of Piraeus)

  • John Soldatos

    (Innov-Acts Ltd)

  • Michael Filippakis

    (University of Piraeus)

  • Dimosthenis Kyriazis

    (University of Piraeus)

Abstract

Determining and minimizing risk exposure pose one of the biggest challenges in the financial industry as an environment with multiple factors that affect (non-)identified risks and the corresponding decisions. Various estimation metrics are utilized towards robust and efficient risk management frameworks, with the most prevalent among them being the Value at Risk (VaR). VaR is a valuable risk-assessment approach, which offers traders, investors, and financial institutions information regarding risk estimations and potential investment insights. VaR has been adopted by the financial industry for decades, but the generated predictions lack efficiency in times of economic turmoil such as the 2008 global financial crisis and the COVID-19 pandemic, which in turn affects the respective decisions. To address this challenge, a variety of well-established variations of VaR models are exploited by the financial community, including data-driven and data analytics models. In this context, this paper introduces a probabilistic deep learning approach, leveraging time-series forecasting techniques with high potential of monitoring the risk of a given portfolio in a quite efficient way. The proposed approach has been evaluated and compared to the most prominent methods of VaR calculation, yielding promising results for VaR 99% for forex-based portfolios.

Suggested Citation

  • Georgios Fatouros & Georgios Makridis & Dimitrios Kotios & John Soldatos & Michael Filippakis & Dimosthenis Kyriazis, 2023. "DeepVaR: a framework for portfolio risk assessment leveraging probabilistic deep neural networks," Digital Finance, Springer, vol. 5(1), pages 29-56, March.
  • Handle: RePEc:spr:digfin:v:5:y:2023:i:1:d:10.1007_s42521-022-00050-0
    DOI: 10.1007/s42521-022-00050-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-022-00050-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-022-00050-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    2. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    3. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 87-121, January.
    4. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    5. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    6. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Risk Assessment for Banking Systems," Management Science, INFORMS, vol. 52(9), pages 1301-1314, September.
    7. Bekiros, Stelios D. & Georgoutsos, Dimitris A., 2005. "Estimation of Value-at-Risk by extreme value and conventional methods: a comparative evaluation of their predictive performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(3), pages 209-228, July.
    8. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
    9. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    10. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    11. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    12. Peter Dattels & Ken Miyajima, 2009. "Will Emerging Markets Remain Resilient to Global Stress?," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 1(1), pages 5-24, January.
    13. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Using Market Information for Banking System Risk Assessment," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    14. Bernadine De Waal & Mark A. Petersen & Lungile N. P. Hlatshwayo & Janine Mukuddem-Petersen, 2013. "A note on Basel III and liquidity," Applied Economics Letters, Taylor & Francis Journals, vol. 20(8), pages 777-780, May.
    15. Susan Thomas & Mandira Sarma & Ajay Shah, 2003. "Selection of Value-at-Risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 337-358.
    16. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    2. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    3. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    4. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    5. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    6. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    7. Alex YiHou Huang, 2010. "An optimization process in Value‐at‐Risk estimation," Review of Financial Economics, John Wiley & Sons, vol. 19(3), pages 109-116, August.
    8. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    9. Chiu, Yen-Chen & Chuang, I-Yuan, 2016. "The performance of the switching forecast model of value-at-risk in the Asian stock markets," Finance Research Letters, Elsevier, vol. 18(C), pages 43-51.
    10. Chan, Ngai Hang & Sit, Tony, 2016. "Artifactual unit root behavior of Value at risk (VaR)," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 88-93.
    11. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    13. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    14. Ameni Ben Salem & Imene Safer & Islem Khefacha, 2021. "Value at Risk Estimation For the BRICS Countries : A Comparative Study," Post-Print hal-03502428, HAL.
    15. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    16. Roland Füss & Zeno Adams & Dieter G Kaiser, 2010. "The predictive power of value-at-risk models in commodity futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 11(4), pages 261-285, October.
    17. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    18. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    19. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
    20. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.

    More about this item

    Keywords

    Probabilistic deep neural networks; Time-series; Forex; Finance; VaR; Risk assessment; VaR prediction;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:5:y:2023:i:1:d:10.1007_s42521-022-00050-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.