IDEAS home Printed from
   My bibliography  Save this article

Estimation of Value-at-Risk by extreme value and conventional methods: a comparative evaluation of their predictive performance


  • Bekiros, Stelios D.
  • Georgoutsos, Dimitris A.


No abstract is available for this item.

Suggested Citation

  • Bekiros, Stelios D. & Georgoutsos, Dimitris A., 2005. "Estimation of Value-at-Risk by extreme value and conventional methods: a comparative evaluation of their predictive performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(3), pages 209-228, July.
  • Handle: RePEc:eee:intfin:v:15:y:2005:i:3:p:209-228

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Danielsson, Jon & Morimoto, Yuji, 2000. "Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 18(2), pages 25-48, December.
    2. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    4. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    5. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. George Kouretas & Leonidas Zarangas, 2005. "Conditional autoregressive valu at risk by regression quantile: Estimatingmarket risk for major stock markets," Working Papers 0521, University of Crete, Department of Economics.
    2. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
    3. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
    6. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," LSE Research Online Documents on Economics 66365, London School of Economics and Political Science, LSE Library.
    7. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    8. Chuangchid, Kantaporn & Sriboonchitta, Songsak & Rahman, Sanzidur & Wiboonpongse, Aree, 2013. "Predicting Malaysian palm oil price using Extreme Value Theory," International Journal of Agricultural Management, Institute of Agricultural Management;International Farm Management Association, vol. 2(2), January.
    9. Rossignolo, Adrian F. & Fethi, Meryem Duygun & Shaban, Mohamed, 2012. "Value-at-Risk models and Basel capital charges," Journal of Financial Stability, Elsevier, vol. 8(4), pages 303-319.
    10. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2007. "Predictive Performance of Conditional Extreme Value Theory and Conventional Methods in Value at Risk Estimation," MPRA Paper 3963, University Library of Munich, Germany.
    11. Muteba Mwamba, John & Mhlanga, Isaah, 2013. "Extreme conditional value at risk: a coherent scenario for risk management," MPRA Paper 64387, University Library of Munich, Germany.
    12. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    13. Muteba Mwamba, John W. & Hammoudeh, Shawkat & Gupta, Rangan, 2017. "Financial tail risks in conventional and Islamic stock markets: A comparative analysis," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 60-82.
    14. Araújo Santos, P. & Fraga Alves, M.I., 2013. "Forecasting Value-at-Risk with a duration-based POT method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 295-309.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:15:y:2005:i:3:p:209-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.