IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v165y2021i1d10.1007_s10584-021-03054-8.html
   My bibliography  Save this article

The effect of climate change on agro-climatic indicators in the UK

Author

Listed:
  • N. W. Arnell

    (University of Reading)

  • A. Freeman

    (University of Reading)

Abstract

The effect of climate change on agriculture in the UK is here assessed using a comprehensive series of policy-relevant agro-climate indicators characterising changes to climate resources and hazards affecting productivity and operations. This paper presents projections of these indicators across the UK with gridded observed data and UKCP18 climate projections representing a range of greenhouse gas emissions scenarios. The projections can be used to inform climate change mitigation and adaptation policy. There will be substantial changes in the climate resource and hazard across the UK during the twenty-first century if emissions continue to follow a high trajectory, and there will still be some changes if emissions reduce to achieve international climate policy targets. Growing seasons for certain crops will lengthen, crop growth will be accelerated, and both drought and heat risks (for some types of production) will increase. Soils will become drier in autumn, although there will be less change in winter and spring. The longer growing seasons and warmer temperatures provide opportunities for new crops, subject to the effects of increasing challenges to production. Most of the changes are relatively consistent across the UK, although drought risk and heat stress risk increase most rapidly in the south and east. The climate change trend is superimposed onto considerable year to year variability. Although there is strong consensus across climate projections on the direction of change, there is considerable uncertainty in the rate and magnitude of change for a given emissions scenario. For the temperature-based indicators, this reflects uncertainty in climate sensitivity, whilst for the precipitation-based indicators largely reflects uncertainty in projected changes in the weather systems affecting the UK.

Suggested Citation

  • N. W. Arnell & A. Freeman, 2021. "The effect of climate change on agro-climatic indicators in the UK," Climatic Change, Springer, vol. 165(1), pages 1-26, March.
  • Handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-03054-8
    DOI: 10.1007/s10584-021-03054-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03054-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03054-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerry L. Hatfield & John Antle & Karen A. Garrett & Roberto Cesar Izaurralde & Terry Mader & Elizabeth Marshall & Mark Nearing & G. Philip Robertson & Lewis Ziska, 2020. "Indicators of climate change in agricultural systems," Climatic Change, Springer, vol. 163(4), pages 1719-1732, December.
    2. Parsons, David J. & Rey, Dolores & Tanguy, Maliko & Holman, Ian P., 2019. "Regional variations in the link between drought indices and reported agricultural impacts of drought," Agricultural Systems, Elsevier, vol. 173(C), pages 119-129.
    3. A. Harding & M. Rivington & M. Mineter & S. Tett, 2015. "“Agro-meteorological indices and climate model uncertainty over the UK”," Climatic Change, Springer, vol. 128(1), pages 113-126, January.
    4. Dardonville, Manon & Urruty, Nicolas & Bockstaller, Christian & Therond, Olivier, 2020. "Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems," Agricultural Systems, Elsevier, vol. 184(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iain Brown & Pam Berry, 2022. "National Climate Change Risk Assessments to inform adaptation policy priorities and environmental sustainability outcomes: a knowledge systems perspective," Climatic Change, Springer, vol. 175(3), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Slijper & Yann de Mey & P Marijn Poortvliet & Miranda P M Meuwissen, 2022. "Quantifying the resilience of European farms using FADN," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 121-150.
    2. Nabeel Bani Hani & Fakher J. Aukour & Mohammed I. Al-Qinna, 2022. "Investigating the Pearl Millet ( Pennisetum glaucum ) as a Climate-Smart Drought-Tolerant Crop under Jordanian Arid Environments," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    3. Harkness, Caroline & Areal, Francisco J. & Semenov, Mikhail A. & Senapati, Nimai & Shield, Ian F. & Bishop, Jacob, 2023. "Towards stability of food production and farm income in a variable climate," Ecological Economics, Elsevier, vol. 204(PA).
    4. De Lapparent, Alice & Sabatier, Rodolphe & Paut, Raphaël & Martin, Sophie, 2023. "Perennial transitions from market gardening towards mixed fruit tree - vegetable systems," Agricultural Systems, Elsevier, vol. 207(C).
    5. Wei Pei & Cuizhu Tian & Qiang Fu & Yongtai Ren & Tianxiao Li, 2022. "Risk analysis and influencing factors of drought and flood disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1599-1620, February.
    6. Parastoo Parivar & David Quanrud & Ahad Sotoudeh & Mahdieh Abolhasani, 2021. "Evaluation of urban ecological sustainability in arid lands (case study: Yazd-Iran)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2797-2826, February.
    7. Cristina Campobenedetto & Chiara Agliassa & Giuseppe Mannino & Ivano Vigliante & Valeria Contartese & Francesca Secchi & Cinzia M. Bertea, 2021. "A Biostimulant Based on Seaweed ( Ascophyllum nodosum and Laminaria digitata ) and Yeast Extracts Mitigates Water Stress Effects on Tomato ( Solanum lycopersicum L.)," Agriculture, MDPI, vol. 11(6), pages 1-16, June.
    8. Dardonville, Manon & Bockstaller, Christian & Villerd, Jean & Therond, Olivier, 2022. "Resilience of agricultural systems: biodiversity-based systems are stable, while intensified ones are resistant and high-yielding," Agricultural Systems, Elsevier, vol. 197(C).
    9. Harkness, Caroline & Areal, Francisco J. & Semenov, Mikhail A. & Senapati, Nimai & Shield, Ian F. & Bishop, Jacob, 2021. "Stability of farm income: The role of agricultural diversity and agri-environment scheme payments," Agricultural Systems, Elsevier, vol. 187(C).
    10. Marine Albert & Jacques-Eric Bergez & Magali Willaume & Stéphane Couture, 2022. "Vulnerability of Maize Farming Systems to Climate Change: Farmers’ Opinions Differ about the Relevance of Adaptation Strategies," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    11. Vincenzo Guerriero & Anna Rita Scorzini & Bruno Di Lena & Stefano Iulianella & Mario Di Bacco & Marco Tallini, 2023. "Impact of Climate Change on Crop Yields: Insights from the Abruzzo Region, Central Italy," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    12. Intekhab Alam & Shinji Otani & Abir Nagata & Mohammad Shahriar Khan & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2022. "Short- and Long-Term Effects of Drought on Selected Causes of Mortality in Northern Bangladesh," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    13. Barnes, Andrew P. & Bevan, Kev & Moxey, Andrew & Grierson, Sascha & Toma, Luiza, 2023. "Identifying best practice in Less Favoured Area mixed livestock systems," Agricultural Systems, Elsevier, vol. 208(C).
    14. Lei Liu & Jianqin Ma & Xiuping Hao & Qingyun Li, 2019. "Limitations of Water Resources to Crop Water Requirement in the Irrigation Districts along the Lower Reach of the Yellow River in China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    15. Drakopoulos, Dimitrios & Kägi, Andreas & Six, Johan & Zorn, Alexander & Wettstein, Felix E. & Bucheli, Thomas D. & Forrer, Hans-Rudolf & Vogelgsang, Susanne, 2021. "The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat," Agricultural Systems, Elsevier, vol. 192(C).
    16. Wickramasinghe, M.R.C.P. & Dayawansa, N.D.K. & Jayasiri, M.M.J.G.C.N. & De Silva, Ranjith Premalal, 2023. "A study on external pressures of an ancient irrigation cascade system in Sri Lanka," Agricultural Systems, Elsevier, vol. 205(C).
    17. Matthew C. LaFevor, 2022. "Crop Species Production Diversity Enhances Revenue Stability in Low-Income Farm Regions of Mexico," Agriculture, MDPI, vol. 12(11), pages 1-22, November.
    18. Elmiger, By Noëmi & Finger, Robert & Ghazoul, Jaboury & Schaub, Sergei, 2023. "Biodiversity indicators for result-based agri-environmental schemes – Current state and future prospects," Agricultural Systems, Elsevier, vol. 204(C).
    19. Ioannidou, Sotiroula C. & Litskas, Vassilis D. & Stavrinides, Menelaos C. & Vogiatzakis, Ioannis N., 2022. "Linking management practices and soil properties to Ecosystem Services in Mediterranean mixed orchards," Ecosystem Services, Elsevier, vol. 53(C).
    20. Sohail Abbas & Shazia Kousar, 2021. "Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15314-15340, October.

    More about this item

    Keywords

    Climate impacts; Agriculture; UKCP18; Drought; Heat impacts;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:165:y:2021:i:1:d:10.1007_s10584-021-03054-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.