IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3798-d1640530.html
   My bibliography  Save this article

Predicting Climate Change Impacts on Agriculture in the Southwest United Kingdom

Author

Listed:
  • James Andrew Jackson

    (Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK)

  • Rick Stafford

    (Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK)

  • Marin Cvitanović

    (Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK)

  • Elena Cantarello

    (Department of Life and Environmental Sciences, Bournemouth University, Poole BH12 5BB, UK)

Abstract

Climate change will create significant challenges to agriculture. The effects on livestock productivity and crop production are highly dependent on weather conditions with consequences for food security. If agriculture is to remain a viable industry and to maintain future food security, the adaptations and the ideal timeframes for their implementation to mitigate against climate change impacts will be essential knowledge. This study aims to show how farms will be affected and will need to adapt to climate change, based on a holistic examination of the entire farming process. A modified Bayesian belief network (BBN) was used to investigate climate change impacts on livestock, crops, soil, water use, disease, and pesticide use through the use of 48 indicators (comprising climate, agricultural, and environmental). The seasonal impact of climate change on all aspects of farming was investigated for three different climate forcing scenarios (RCPs 2.6, 4.5, and 8.5) for four timeframes (2030, 2050, 2080, and 2099). The results suggest that heat stress and disease in both livestock and crops will require adaptations (e.g., shelter infrastructure being built, new crops, or cultivators grown). Pest intensity is expected to rise, leading to increased pesticide use and greater damage to crops and livestock. Higher temperatures will likely cause increased drought and irrigation needs, while increasing rain intensity might lead to winter flooding. Soil quality maintenance will rely increasingly on fertilisers, with significant decreases in quality if unsustainable. Crop yield will be dependent on new crops or cultivators that can cope with a changing climate being successful and market access; failure to do so could lead to substantial decrease, in food security. Impacts are more significant from 2080 onwards, with the severity of impacts dependent on season.

Suggested Citation

  • James Andrew Jackson & Rick Stafford & Marin Cvitanović & Elena Cantarello, 2025. "Predicting Climate Change Impacts on Agriculture in the Southwest United Kingdom," Sustainability, MDPI, vol. 17(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3798-:d:1640530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    2. Thomasz, Esteban Otto & Kasanzew, Andrés & Massot, Juan Miguel & García-García, Agustín, 2024. "Valuing ecosystem services in agricultural production in southwest Spain," Ecosystem Services, Elsevier, vol. 68(C).
    3. Lindsey L. Sloat & James S. Gerber & Leah H. Samberg & William K. Smith & Mario Herrero & Laerte G. Ferreira & Cécile M. Godde & Paul C. West, 2018. "Increasing importance of precipitation variability on global livestock grazing lands," Nature Climate Change, Nature, vol. 8(3), pages 214-218, March.
    4. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    5. N. W. Arnell & A. Freeman, 2021. "The effect of climate change on agro-climatic indicators in the UK," Climatic Change, Springer, vol. 165(1), pages 1-26, March.
    6. Helen M. Hanlon & Dan Bernie & Giulia Carigi & Jason A. Lowe, 2021. "Future changes to high impact weather in the UK," Climatic Change, Springer, vol. 166(3), pages 1-23, June.
    7. A. N. Hristov & A. T. Degaetano & C. A. Rotz & E. Hoberg & R. H. Skinner & T. Felix & H. Li & P. H. Patterson & G. Roth & M. Hall & T. L. Ott & L. H. Baumgard & W. Staniar & R. M. Hulet & C. J. Dell &, 2018. "Climate change effects on livestock in the Northeast US and strategies for adaptation," Climatic Change, Springer, vol. 146(1), pages 33-45, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Bayat & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2022. "Performance Evaluation of Agricultural Surface Water Distribution Systems Based on Water-food-energy Nexus and Using AHP-Entropy-WASPAS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4697-4720, September.
    2. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    3. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    4. Dallison, Richard J.H. & Patil, Sopan D., 2023. "Impact of climate change on hydropower potential in the UK and Ireland," Renewable Energy, Elsevier, vol. 207(C), pages 611-628.
    5. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    6. Yan Lu & Haikun Wang & Qin’geng Wang & Yanyan Zhang & Yiyong Yu & Yu Qian, 2017. "Global anthropogenic heat emissions from energy consumption, 1965–2100," Climatic Change, Springer, vol. 145(3), pages 459-468, December.
    7. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    9. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    10. Taihao Wang & Huadong Du & Zezheng Zhao & Zeming Zhou & Ana Russo & Hailing Xi & Jiping Zhang & Chengjun Zhou, 2022. "Prediction of the Impact of Meteorological Conditions on Air Quality during the 2022 Beijing Winter Olympics," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    11. Silvia Marková & Hayley C. Lanier & Marco A. Escalante & Marcos O. R. Cruz & Michaela Horníková & Mateusz Konczal & Lawrence J. Weider & Jeremy B. Searle & Petr Kotlík, 2023. "Local adaptation and future climate vulnerability in a wild rodent," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    13. Seyed Mehdi Seyed Hoshiyar & Nader Pirmoradian & Afshin Ashrafzadeh & Atefeh Parvaresh Rizi, 2021. "Performance Assessment of a Water Delivery Canal to Improve Agricultural Water Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2487-2501, June.
    14. Diop, Bassirou & Blanchard, Fabian & Sanz, Nicolas, 2018. "Mangrove increases resiliency of the French Guiana shrimp fishery facing global warming," Ecological Modelling, Elsevier, vol. 387(C), pages 27-37.
    15. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    16. Wu, Shiang-Jen & Yang, Han-Yuan & Chang, Che-Hao & Hsu, Chih-Tsung, 2023. "Modeling GA-derived optimization analysis for canal-based irrigation water allocation under variations in runoff-related and irrigation-related factors," Agricultural Water Management, Elsevier, vol. 290(C).
    17. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    18. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    19. Wise, Marshall & Hodson, Elke L. & Mignone, Bryan K. & Clarke, Leon & Waldhoff, Stephanie & Luckow, Patrick, 2015. "An approach to computing marginal land use change carbon intensities for bioenergy in policy applications," Energy Economics, Elsevier, vol. 50(C), pages 337-347.
    20. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3798-:d:1640530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.