IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v245y2021ics0378377420321259.html
   My bibliography  Save this article

Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model

Author

Listed:
  • Kaghazchi, Afsaneh
  • Hashemy Shahdany, S. Mehdy
  • Roozbahani, Abbas

Abstract

Regular appraisal performance of the irrigation water distribution systems from the adequacy, equity, and sustainable operation perspectives are essential due to the significant water losses that has been led by the improper adjustments of the hydraulic structures. Appropriate operational strategies could be adapted when the irrigation district authorities have a pragmatic approach to assess the hydraulic behavior of the system. This study develops an intelligent model for i) hydraulic simulation and ii) operational performance evaluation of the agricultural water distribution systems by employing a Hybrid Bayesian Networks (HBNs). The developed model was tested on a real test case located in Iran and under the different operational scenarios. In this regard, firstly, a hydrodynamic model of the test case was developed, calibrated, and validated to simulate the hydraulic condition of the irrigation canal based on a wide range of the canal inflow variations, called operational scenarios. Then, performance assessment was conducted for the scenarios based on adequacy, equity, and efficiency of water distribution perspectives. The results were employed for the training of the HBNs model. The HBNs model configuration was selected based on the irrigation district manages expectations, where the performance indicators of "adequacy," "efficiency" and "equity" of water delivery, needs to be calculated for the canal inflow variations in different operational scenarios. Validation of the developed HBNs model reveals that Mean Absolute Percentage Error (MAPE) and Coefficient of Determination (R2) of the superior model within the entire output nodes are 17.31% and 0.96, respectively. The results indicated the ability of the HBNs Model for the "Simulation/Performance Appraisal" of any operating systems in the irrigation districts. The developed model is a useful tool for i) periodic appraisal performance of the distribution system, ii) operational personals and ditch-riders, and iii) regionalization of the district to facilitate the recurrent inspections and field visiting.

Suggested Citation

  • Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321259
    DOI: 10.1016/j.agwat.2020.106578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420321259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elshaikh, Ahmed E. & Jiao, Xiyun & Yang, Shi-hong, 2018. "Performance evaluation of irrigation projects: Theories, methods, and techniques," Agricultural Water Management, Elsevier, vol. 203(C), pages 87-96.
    2. Borgia, Cecilia & García-Bolaños, Mariana & Li, Tao & Gómez-Macpherson, Helena & Comas, Jordi & Connor, David & Mateos, Luciano, 2013. "Benchmarking for performance assessment of small and large irrigation schemes along the Senegal Valley in Mauritania," Agricultural Water Management, Elsevier, vol. 121(C), pages 19-26.
    3. Neil, Martin & Tailor, Manesh & Marquez, David & Fenton, Norman & Hearty, Peter, 2008. "Modelling dependable systems using hybrid Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 933-939.
    4. Kumar, P. & Mishra, A. & Raghuwanshi, N. S. & Singh, R., 2002. "Application of unsteady flow hydraulic-model to a large and complex irrigation system," Agricultural Water Management, Elsevier, vol. 54(1), pages 49-66, March.
    5. Homaee, M. & Dirksen, C. & Feddes, R. A., 2002. "Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions," Agricultural Water Management, Elsevier, vol. 57(2), pages 89-109, October.
    6. Hashemy Shahdany, S. Mehdy & Firoozfar, Alireza & Maestre, J.M. & Mallakpour, Iman & Taghvaeian, Saleh & Karimi, Poolad, 2018. "Operational performance improvements in irrigation canals to overcome groundwater overexploitation," Agricultural Water Management, Elsevier, vol. 204(C), pages 234-246.
    7. Stefan Mittnik & Irina Starobinskaya, 2010. "Modeling Dependencies in Operational Risk with Hybrid Bayesian Networks," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 379-390, September.
    8. Yu Chen & Liang Chang & Chun Huang & Hone Chu, 2013. "Applying Genetic Algorithm and Neural Network to the Conjunctive Use of Surface and Subsurface Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4731-4757, November.
    9. S. M. Hashemy Shahdany & A. R. Firoozfar, 2017. "Providing a Reliable Water Level Control in Main Canals under Significant Inflow Fluctuations at Drought Periods within Canal Automation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3343-3354, September.
    10. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    11. Okada, H. & Styles, S.W. & Grismer, M.E., 2008. "Application of the Analytic Hierarchy Process to irrigation project improvement: Part II. How professionals evaluate an irrigation project for its improvement," Agricultural Water Management, Elsevier, vol. 95(3), pages 205-210, March.
    12. Okada, H. & Styles, S.W. & Grismer, M.E., 2008. "Application of the Analytic Hierarchy Process to irrigation project improvement: Part I. Impacts of irrigation project internal processes on crop yields," Agricultural Water Management, Elsevier, vol. 95(3), pages 199-204, March.
    13. Chefi Triki & Slim Zekri & Ali Al-Maktoumi & Mahsa Fallahnia, 2017. "An Artificial Intelligence Approach for the Stochastic Management of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4925-4939, December.
    14. Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Homaee, M. & Feddes, R. A. & Dirksen, C., 2002. "Simulation of root water uptake: II. Non-uniform transient water stress using different reduction functions," Agricultural Water Management, Elsevier, vol. 57(2), pages 111-126, October.
    16. Yaltaghian Khiabani, M. & Hashamy Shahadany, S.M. & Maestre, J.M. & Stepanian, R. & Mallakpour, I., 2020. "Potential assessment of non-automatic and automatic modernization alternatives for the improvement of water distribution supplied by surface-water resources: A case study in Iran," Agricultural Water Management, Elsevier, vol. 230(C).
    17. Javaid Tariq & Muhammad Latif, 2010. "Improving Operational Performance of Farmers Managed Distributary Canal using SIC Hydraulic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3085-3099, September.
    18. Chris J Needham & James R Bradford & Andrew J Bulpitt & David R Westhead, 2007. "A Primer on Learning in Bayesian Networks for Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-8, August.
    19. Zohreh Sherafatpour & Abbas Roozbahani & Yousef Hasani, 2019. "Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2277-2299, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatemeh Bayat & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2022. "Performance Evaluation of Agricultural Surface Water Distribution Systems Based on Water-food-energy Nexus and Using AHP-Entropy-WASPAS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4697-4720, September.
    2. Afsaneh Kaghazchi & Seied Mehdy Hashemy Shahdany & Alireza Firoozfar, 2022. "Prioritization of agricultural water distribution operating systems based on the sustainable development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 23-40, February.
    3. Barkhordari, Soroush & Hashemy Shahdany, Seied Mehdy, 2021. "Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Hassan, Wasim & Manzoor, Talha & Muhammad, Abubakr, 2023. "Improving equity in demand-driven irrigation systems through a rights-preserving water allocation mechanism," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2021. "Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3139-3159, August.
    6. Karimi Avargani, Habib & Hashemy Shahdany, S. Mehdy & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid & Guan, Guanghua & Behzadi, Farhad & Milan, Sami Ghordoyee & Berndtsson, Ronny, 2023. "Operational loss estimation in irrigation canals by integrating hydraulic simulation and crop growth modeling," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Seyed Mehdi Seyed Hoshiyar & Nader Pirmoradian & Afshin Ashrafzadeh & Atefeh Parvaresh Rizi, 2021. "Performance Assessment of a Water Delivery Canal to Improve Agricultural Water Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2487-2501, June.
    8. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    9. Jolfan, Mohsen Hosseini & Hashemy Shahdany, S. Mehdy & Javadi, Saman & Milan, Sami Ghordoyee & Neshat, Aminreza & Berndtsson, Ronny & Tork, Hamed, 2023. "Modernization in agricultural water distribution system for aquifer storage and recovery – A case study," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avargani, Habib Karimi & Hashemy Shahdany, S. Mehdy & Kamrani, Kazem & Maestre, Jose, M. & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid, 2022. "Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Barkhordari, Soroush & Hashemy Shahdany, Seied Mehdy, 2021. "Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations," Agricultural Water Management, Elsevier, vol. 250(C).
    3. Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Seyed Mehdi Seyed Hoshiyar & Nader Pirmoradian & Afshin Ashrafzadeh & Atefeh Parvaresh Rizi, 2021. "Performance Assessment of a Water Delivery Canal to Improve Agricultural Water Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2487-2501, June.
    5. Jolfan, Mohsen Hosseini & Hashemy Shahdany, S. Mehdy & Javadi, Saman & Milan, Sami Ghordoyee & Neshat, Aminreza & Berndtsson, Ronny & Tork, Hamed, 2023. "Modernization in agricultural water distribution system for aquifer storage and recovery – A case study," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Afsaneh Kaghazchi & Seied Mehdy Hashemy Shahdany & Alireza Firoozfar, 2022. "Prioritization of agricultural water distribution operating systems based on the sustainable development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 23-40, February.
    7. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    8. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    9. Milad Nouri & Mehdi Homaee & Mohammad Bannayan, 2017. "Quantitative Trend, Sensitivity and Contribution Analyses of Reference Evapotranspiration in some Arid Environments under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2207-2224, May.
    10. Wang, Lichun & Shi, Jianchu & Zuo, Qiang & Zheng, Wenjuan & Zhu, Xiangming, 2012. "Optimizing parameters of salinity stress reduction function using the relationship between root-water-uptake and root nitrogen mass of winter wheat," Agricultural Water Management, Elsevier, vol. 104(C), pages 142-152.
    11. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Homaee, M. & Feddes, R. A. & Dirksen, C., 2002. "Simulation of root water uptake: III. Non-uniform transient combined salinity and water stress," Agricultural Water Management, Elsevier, vol. 57(2), pages 127-144, October.
    13. Wu, Xun & Zuo, Qiang & Shi, Jianchu & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2020. "Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model," Agricultural Water Management, Elsevier, vol. 240(C).
    14. Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.
    15. Wu, Xun & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Shi, Jianchu & Yan, Xudong & Zhang, Hongfei & Xue, Xuzhang & Wang, Lichun & Zhang, Mo & Ben-Gal, Alon, 2017. "Root-weighted soil water status for plant water deficit index based irrigation scheduling," Agricultural Water Management, Elsevier, vol. 189(C), pages 137-147.
    16. Saadat, Saeed & Homaee, Mehdi, 2015. "Modeling sorghum response to irrigation water salinity at early growth stage," Agricultural Water Management, Elsevier, vol. 152(C), pages 119-124.
    17. Ritzema, H.P., 2016. "Drain for Gain: Managing salinity in irrigated lands—A review," Agricultural Water Management, Elsevier, vol. 176(C), pages 18-28.
    18. Xie, Tao & Liu, Xinhui & Sun, Tao, 2011. "The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China," Ecological Modelling, Elsevier, vol. 222(2), pages 241-252.
    19. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    20. Jalali, Vahidreza & Asadi Kapourchal, Safoora & Homaee, Mehdi, 2017. "Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 13-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.