IDEAS home Printed from
   My bibliography  Save this article

Emergy evaluation perspectives of an irrigation improvement project proposal in China


  • Chen, Dan
  • Webber, Michael
  • Chen, Jing
  • Luo, Zhaohui


Emergy theory and method are used to evaluate the feasibility of an irrigation improvement project in China and its contribution to local agricultural development. An emergy method for evaluating the costs and benefits of the project and a composite index named the emergy cost-benefit ratio (EmCBR) were developed. The emergy evaluation shows that the major costs associated with the proposed project come from earthwork (77.4% of the total cost) and concrete work (15.4%), and that water saving (43.0% of the total benefit) and agricultural yield increase (56.9%) are the most important contributions. The calculated EmCBR is 0.97 (the lowest value for a feasible project is 1.0) which indicates that this project would not be feasible in emergy terms. The regional agricultural system could not benefit from the proposed project, according to several emergy indices: emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR) and environmental sustainability index (ESI). The results show that conventional cost-benefit analysis could fail to provide an adequate decision-making framework because it is unable to value resources and environmental impacts properly. More additional emergy evaluations should be completed on other alternatives to the proposed project to provide adequate guidelines for selecting the best alternative that contributes most to agricultural development with limited environmental impact.

Suggested Citation

  • Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
  • Handle: RePEc:eee:ecolec:v:70:y:2011:i:11:p:2154-2162

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Patterson, Murray G., 2002. "Ecological production based pricing of biosphere processes," Ecological Economics, Elsevier, vol. 41(3), pages 457-478, June.
    2. Jiang, M.M. & Chen, B. & Zhou, J.B. & Tao, F.R. & Li, Z. & Yang, Z.F. & Chen, G.Q., 2007. "Emergy account for biomass resource exploitation by agriculture in China," Energy Policy, Elsevier, vol. 35(9), pages 4704-4719, September.
    3. Okada, H. & Styles, S.W. & Grismer, M.E., 2008. "Application of the Analytic Hierarchy Process to irrigation project improvement: Part I. Impacts of irrigation project internal processes on crop yields," Agricultural Water Management, Elsevier, vol. 95(3), pages 199-204, March.
    4. Bebbington, Jan & Brown, Judy & Frame, Bob, 2007. "Accounting technologies and sustainability assessment models," Ecological Economics, Elsevier, vol. 61(2-3), pages 224-236, March.
    5. Anastasios Michailidis & Konstadinos Mattas, 2007. "Using Real Options Theory to Irrigation Dam Investment Analysis: An Application of Binomial Option Pricing Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1717-1733, October.
    6. Anastasios Michailidis & Konstadinos Mattas & Irene Tzouramani & Diamantis Karamouzis, 2009. "A Socioeconomic Valuation of an Irrigation System Project Based on Real Option Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1989-2001, August.
    7. Meijer, Karen & Boelee, Eline & Augustijn, Denie & Molen, Irna van der, 2006. "Impacts of concrete lining of irrigation canals on availability of water for domestic use in southern Sri Lanka," Agricultural Water Management, Elsevier, vol. 83(3), pages 243-251, June.
    8. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    9. Cuihong Yang & Xikang Chen & Jian Xu, 2008. "A Method to Optimize Gross Fixed Capital Investments for Water Conservancy in China," Economic Systems Research, Taylor & Francis Journals, vol. 20(2), pages 151-172.
    10. Blanke, Amelia & Rozelle, Scott & Lohmar, Bryan & Wang, Jinxia & Huang, Jikun, 2007. "Water saving technology and saving water in China," Agricultural Water Management, Elsevier, vol. 87(2), pages 139-150, January.
    11. Dong, Xiaobin & Ulgiati, Sergio & Yan, Maochao & Gao, Wangsheng, 2008. "Progress, influence and perspectives of emergy theories in China, in support of environmentally sound economic development and equitable trade," Energy Policy, Elsevier, vol. 36(3), pages 1019-1028, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dai, Xiaoping & Han, Yuping & Zhang, Xiaohong & Chen, Jing & Li, Daoxi, 2017. "Development of a water transfer compensation classification: A case study between China, Japan, America and Australia," Agricultural Water Management, Elsevier, vol. 182(C), pages 151-157.
    2. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:70:y:2011:i:11:p:2154-2162. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.