IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v385y2025ics0306261925002570.html
   My bibliography  Save this article

The spatial potential for agrivoltaics to address energy-agriculture land use conflicts in Great Britain

Author

Listed:
  • Neesham-McTiernan, Talitha H.
  • Randle-Boggis, Richard J.
  • Buckley, Alastair R.
  • Hartley, Sue E.

Abstract

Ground-mounted solar parks provide much needed low-carbon electricity, but their development is increasingly conflicting with other land uses, such as agriculture, and their visual intrusion on agricultural landscapes and possible impact on food production is causing increasing public concern. Agrivoltaics has been proven across Europe to produce food and electricity concomitantly, but its potential to alleviate land use conflicts in Great Britain is yet to be explored. This study quantifies the extent that existing solar parks overlap with different grades of agricultural land, and forecasts where PV-agriculture land use conflicts may occur in the future. Where agrivoltaics could alleviate these conflicts is determined based on expert stakeholder insights, revealing that this technology could theoretically generate 338 TWh/year while maintaining outputs from 20,272 km2 of high-grade farmland. Some agrivoltaic designs reduce evaporative water loss, and this study highlights where this would be beneficial for regions facing water scarcity. The spatial suitability of different cropland classifications is also shown. This study provides the first spatial assessment of the potential for large scale PV infrastructure to be developed in synergy rather than in conflict with agriculture in Great Britain.

Suggested Citation

  • Neesham-McTiernan, Talitha H. & Randle-Boggis, Richard J. & Buckley, Alastair R. & Hartley, Sue E., 2025. "The spatial potential for agrivoltaics to address energy-agriculture land use conflicts in Great Britain," Applied Energy, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002570
    DOI: 10.1016/j.apenergy.2025.125527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zainali, Sebastian & Ma Lu, Silvia & Stridh, Bengt & Avelin, Anders & Amaducci, Stefano & Colauzzi, Michele & Campana, Pietro Elia, 2023. "Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts," Applied Energy, Elsevier, vol. 339(C).
    2. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    3. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. N. W. Arnell & A. Freeman, 2021. "The effect of climate change on agro-climatic indicators in the UK," Climatic Change, Springer, vol. 165(1), pages 1-26, March.
    6. Palmer, Diane & Gottschalg, Ralph & Betts, Tom, 2019. "The future scope of large-scale solar in the UK: Site suitability and target analysis," Renewable Energy, Elsevier, vol. 133(C), pages 1136-1146.
    7. Asa'a, S. & Reher, T. & Rongé, J. & Diels, J. & Poortmans, J. & Radhakrishnan, H.S. & van der Heide, A. & Van de Poel, B. & Daenen, M., 2024. "A multidisciplinary view on agrivoltaics: Future of energy and agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    8. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    9. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    10. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    11. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    13. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    14. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    15. Willockx, Brecht & Lavaert, Cas & Cappelle, Jan, 2023. "Performance evaluation of vertical bifacial and single-axis tracked agrivoltaic systems on arable land," Renewable Energy, Elsevier, vol. 217(C).
    16. Randle-Boggis, R.J. & White, P.C.L. & Cruz, J. & Parker, G. & Montag, H. & Scurlock, J.M.O. & Armstrong, A., 2020. "Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    17. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    18. Reher, Thomas & Lavaert, Cas & Willockx, Brecht & Huyghe, Yasmin & Bisschop, Jolien & Martens, Johan A. & Diels, Jan & Cappelle, Jan & Van de Poel, Bram, 2024. "Potential of sugar beet (Beta vulgaris) and wheat (Triticum aestivum) production in vertical bifacial, tracked, or elevated agrivoltaic systems in Belgium," Applied Energy, Elsevier, vol. 359(C).
    19. Randle-Boggis, R.J. & Barron-Gafford, G.A. & Kimaro, A.A. & Lamanna, C. & Macharia, C. & Maro, J. & Mbele, A. & Hartley, S.E., 2025. "Harvesting the sun twice: Energy, food and water benefits from agrivoltaics in East Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    20. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zainali, Sebastian & Lu, Silvia Ma & Fernández-Solas, Álvaro & Cruz-Escabias, Alejandro & Fernández, Eduardo F. & Zidane, Tekai Eddine Khalil & Honningdalsnes, Erlend Hustad & Nygård, Magnus Moe & Lel, 2025. "Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review," Applied Energy, Elsevier, vol. 386(C).
    2. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    4. Kumdokrub, Tikumporn & You, Fengqi, 2025. "Techno-economic and environmental optimization of agrivoltaics: A case study of Cornell University," Applied Energy, Elsevier, vol. 384(C).
    5. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    6. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    7. Guarino, Stefania & Buscemi, Alessandro & Chiaruzzi, Christian & Lo Brano, Valerio, 2025. "Modelling and analysis of V-shaped bifacial PV systems for agrivoltaic applications: A Python-based approach for energy optimization," Applied Energy, Elsevier, vol. 389(C).
    8. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. C, Rösch & E, Fakharizadehshirazi, 2024. "The spatial socio-technical potential of agrivoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    11. Berrian, Djaber & Chhapia, Gaurang & Linder, Johannes, 2025. "Performance of land productivity with single-axis trackers and shade-intolerant crops in agrivoltaic systems," Applied Energy, Elsevier, vol. 384(C).
    12. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    13. Widmer, J. & Christ, B. & Grenz, J. & Norgrove, L., 2024. "Agrivoltaics, a promising new tool for electricity and food production: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    15. Shalom, Ben Aviad & Mittelman, Gur & Kribus, Abraham & Vitoshkin, Helena, 2023. "Optical and electrical performance of an agrivoltaic field with spectral beam splitting," Renewable Energy, Elsevier, vol. 219(P1).
    16. Alam, Habeel & Butt, Nauman Zafar, 2024. "How does module tracking for agrivoltaics differ from standard photovoltaics? Food, energy, and technoeconomic implications," Renewable Energy, Elsevier, vol. 235(C).
    17. Sirnik, I. & Sluijsmans, J. & Oudes, D. & Stremke, S., 2023. "Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Mazzeo, Domenico & Di Zio, Andrea & Pesenti, Claudio & Leva, Sonia, 2025. "Optimizing agrivoltaic systems: A comprehensive analysis of design, crop productivity and energy performance in open-field configurations," Applied Energy, Elsevier, vol. 390(C).
    19. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    20. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:385:y:2025:i:c:s0306261925002570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.