IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics030626192500515x.html
   My bibliography  Save this article

Modelling and analysis of V-shaped bifacial PV systems for agrivoltaic applications: A Python-based approach for energy optimization

Author

Listed:
  • Guarino, Stefania
  • Buscemi, Alessandro
  • Chiaruzzi, Christian
  • Lo Brano, Valerio

Abstract

Agrivoltaic systems integrate photovoltaic (PV) energy production with agricultural activities, addressing the critical challenges of land use optimization and sustainable energy generation in the context of climate changes and food security. These systems are pivotal in offering a promising solution in mitigating the environmental and social impacts of utility-scale PV installations, such as habitat disruption and competition with agricultural land. This study evaluates a patented V-shaped bifacial photovoltaic system with a single-axis solar tracking, designed to optimize energy capture but also to minimize shading effects on crops like vineyards. A custom Python-based algorithm using PVlib was developed to simulate the performance of the system, accounting for mutual shading, multiple solar radiation reflections, and dynamic tilt adjustments. Simulations conducted for Palermo, Italy, revealed that the system collects 5.2 % less solar irradiation than traditional side-by-side configurations but achieves an annual energy output of 2089.3 kWh per pair of panels, along with 24 % reduction in land use. These results highlight the system capability to optimize spatial efficiency while maintaining high energy production. The novelty of this work lies in its tailored simulation approach, addressing the unique geometry and operational dynamics of the V-shaped configuration, and its potential adaptability to diverse agrivoltaics scenarios. Unlike existing tools and methodologies in the literature, this work introduces a customized Python-based model specifically designed to analyse the performance of this innovative structure, which is of recent conception and lacks precedent in both academic studies and commercial software solutions. By advancing the methodological framework for integrating renewable energy with agriculture, this study contribute to the broader goals of sustainable development and climate resilience.

Suggested Citation

  • Guarino, Stefania & Buscemi, Alessandro & Chiaruzzi, Christian & Lo Brano, Valerio, 2025. "Modelling and analysis of V-shaped bifacial PV systems for agrivoltaic applications: A Python-based approach for energy optimization," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s030626192500515x
    DOI: 10.1016/j.apenergy.2025.125785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500515X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Babkir & Hedayati-Dezfooli, M. & Gamil, Ahmed, 2023. "Sustainability assessment of alternative energy power generation pathways through the development of impact indicators for water, land, GHG emissions, and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Burhan U Din Abdullah & Suman Lata & Shiva Pujan Jaiswal & Vikas Singh Bhadoria & Georgios Fotis & Athanasios Santas & Lambros Ekonomou, 2023. "A Hybrid Artificial Ecosystem Optimizer and Incremental-Conductance Maximum-Power-Point-Tracking-Controlled Grid-Connected Photovoltaic System," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Zainali, Sebastian & Ma Lu, Silvia & Stridh, Bengt & Avelin, Anders & Amaducci, Stefano & Colauzzi, Michele & Campana, Pietro Elia, 2023. "Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts," Applied Energy, Elsevier, vol. 339(C).
    4. Willockx, Brecht & Reher, Thomas & Lavaert, Cas & Herteleer, Bert & Van de Poel, Bram & Cappelle, Jan, 2024. "Design and evaluation of an agrivoltaic system for a pear orchard," Applied Energy, Elsevier, vol. 353(PB).
    5. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Sonia Jerez & Isabelle Tobin & Robert Vautard & Juan Pedro Montávez & Jose María López-Romero & Françoise Thais & Blanka Bartok & Ole Bøssing Christensen & Augustin Colette & Michel Déqué & Grigory Ni, 2015. "The impact of climate change on photovoltaic power generation in Europe," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    8. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    9. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    10. Williams, Henry J. & Wang, Yipu & Yuan, Bo & Wang, Haomiao & Zhang, K. Max, 2025. "Rethinking agrivoltaic incentive programs: A science-based approach to encourage practical design solutions," Applied Energy, Elsevier, vol. 377(PA).
    11. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    12. Mouhib, Elmehdi & Fernández-Solas, Álvaro & Pérez-Higueras, Pedro J. & Fernández-Ocaña, Ana M. & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2024. "Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems," Applied Energy, Elsevier, vol. 359(C).
    13. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    14. Torrente, Cristóbal J. & Reca, Juan & López-Luque, Rafael & Martínez, Juan & Casares, Francisco J., 2024. "Simulation model to analyze the spatial distribution of solar radiation in agrivoltaic Mediterranean greenhouses and its effect on crop water needs," Applied Energy, Elsevier, vol. 353(PA).
    15. Wei Wu & Shengjuan Yue & Xiaode Zhou & Mengjing Guo & Jiawei Wang & Lei Ren & Bo Yuan, 2020. "Observational Study on the Impact of Large-Scale Photovoltaic Development in Deserts on Local Air Temperature and Humidity," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    16. Fernández-Solas, Álvaro & Fernández-Ocaña, Ana M. & Almonacid, Florencia & Fernández, Eduardo F., 2023. "Potential of agrivoltaics systems into olive groves in the Mediterranean region," Applied Energy, Elsevier, vol. 352(C).
    17. Willockx, Brecht & Lavaert, Cas & Cappelle, Jan, 2023. "Performance evaluation of vertical bifacial and single-axis tracked agrivoltaic systems on arable land," Renewable Energy, Elsevier, vol. 217(C).
    18. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    19. Jiang, Junxia & Gao, Xiaoqing & Lv, Qingquan & Li, Zhenchao & Li, Peidu, 2021. "Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas," Renewable Energy, Elsevier, vol. 174(C), pages 157-169.
    20. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    21. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zainali, Sebastian & Lu, Silvia Ma & Fernández-Solas, Álvaro & Cruz-Escabias, Alejandro & Fernández, Eduardo F. & Zidane, Tekai Eddine Khalil & Honningdalsnes, Erlend Hustad & Nygård, Magnus Moe & Lel, 2025. "Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review," Applied Energy, Elsevier, vol. 386(C).
    2. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    3. Carmine De Francesco & Luana Centorame & Giuseppe Toscano & Daniele Duca, 2025. "Opportunities, Technological Challenges and Monitoring Approaches in Agrivoltaic Systems for Sustainable Management," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    4. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    5. Neesham-McTiernan, Talitha H. & Randle-Boggis, Richard J. & Buckley, Alastair R. & Hartley, Sue E., 2025. "The spatial potential for agrivoltaics to address energy-agriculture land use conflicts in Great Britain," Applied Energy, Elsevier, vol. 385(C).
    6. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    7. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Al-Amin, & Shafiullah, G.M. & Ferdous, S.M. & Shoeb, Md & Reza, S.M. Shamim & Elavarasan, Rajvikram Madurai & Rahman, Mohammed Moseeur, 2024. "Agrivoltaics system for sustainable agriculture and green energy in Bangladesh," Applied Energy, Elsevier, vol. 371(C).
    9. Kumdokrub, Tikumporn & You, Fengqi, 2025. "Techno-economic and environmental optimization of agrivoltaics: A case study of Cornell University," Applied Energy, Elsevier, vol. 384(C).
    10. Elkadeem, Mohamed R. & Zainali, Sebastian & Lu, Silvia Ma & Younes, Ali & Abido, Mohamed A. & Amaducci, Stefano & Croci, Michele & Zhang, Jie & Landelius, Tomas & Stridh, Bengt & Campana, Pietro Elia, 2024. "Agrivoltaic systems potentials in Sweden: A geospatial-assisted multi-criteria analysis," Applied Energy, Elsevier, vol. 356(C).
    11. Uzair Jamil & Joshua M. Pearce, 2025. "Regenerative Agrivoltaics: Integrating Photovoltaics and Regenerative Agriculture for Sustainable Food and Energy Systems," Sustainability, MDPI, vol. 17(11), pages 1-16, May.
    12. Alam, Habeel & Butt, Nauman Zafar, 2024. "How does module tracking for agrivoltaics differ from standard photovoltaics? Food, energy, and technoeconomic implications," Renewable Energy, Elsevier, vol. 235(C).
    13. Sirnik, I. & Sluijsmans, J. & Oudes, D. & Stremke, S., 2023. "Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    14. Gasch, Adam & Lara, Rafael & Pearce, Joshua M., 2025. "Financial analysis of agrivoltaic sheep: Breeding and auction lamb business models," Applied Energy, Elsevier, vol. 381(C).
    15. C, Rösch & E, Fakharizadehshirazi, 2024. "The spatial socio-technical potential of agrivoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    16. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Lisa Bosman & József Kádár & Brandon Yonnie & Amy LeGrande, 2024. "How Market Transformation Policies Can Support Agrivoltaic Adoption," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
    18. Akbar, Asfandyar & Mahmood, Farrukh ibne & Alam, Habeel & Aziz, Farhan & Bashir, Khurram & Zafar Butt, Nauman, 2024. "Field Assessment of Vertical Bifacial Agrivoltaics with Vegetable Production: A Case Study in Lahore, Pakistan," Renewable Energy, Elsevier, vol. 227(C).
    19. Semeraro, Teodoro & Scarano, Aurelia & Curci, Lorenzo Maria & Leggieri, Angelo & Lenucci, Marcello & Basset, Alberto & Santino, Angelo & Piro, Gabriella & De Caroli, Monica, 2024. "Shading effects in agrivoltaic systems can make the difference in boosting food security in climate change," Applied Energy, Elsevier, vol. 358(C).
    20. Randle-Boggis, R.J. & Barron-Gafford, G.A. & Kimaro, A.A. & Lamanna, C. & Macharia, C. & Maro, J. & Mbele, A. & Hartley, S.E., 2025. "Harvesting the sun twice: Energy, food and water benefits from agrivoltaics in East Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s030626192500515x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.