IDEAS home Printed from https://ideas.repec.org/a/spr/agfoec/v7y2019i1d10.1186_s40100-019-0143-7.html
   My bibliography  Save this article

Sustainable intensification of beef production in Colombia—Chances for product differentiation and price premiums

Author

Listed:
  • Andrés Charry

    () (International Center for Tropical Agriculture)

  • Manuel Narjes

    () (University of Hohenheim)

  • Karen Enciso

    () (International Center for Tropical Agriculture)

  • Michael Peters

    () (International Center for Tropical Agriculture)

  • Stefan Burkart

    () (International Center for Tropical Agriculture)

Abstract

To promote the adoption of more sustainable cattle production systems in Colombia (mainly silvopastoral systems with improved forages), some sector stakeholders have proposed the development of differentiated, higher value beef products. However, there have been no rigorous estimations of local market potential and consumer preferences for these hypothetical products yet. On the other hand, while there are clear efforts concerning the environmental impacts of cattle production, its animal welfare implications have taken a secondary place. This research attempts to evaluate the consumer’s response to both the environmental and animal welfare aspects of more sustainable food systems by (i) determining the characteristics of a consumer segment for sustainably produced beef using contingent valuation methods and (ii) estimating the marginal willingness to pay (MWTP) for animal welfare compliance and the environmental benefits derived from sustainable intensification within the identified consumer segment, employing a Discrete Choice Experiment (DCE). In addition, the study estimates the effect of information on consumer’s MWTP for environmentally friendlier beef. Results show that consumers within the identified segment are willing to pay on average 40.2% more for beef certified with both animal welfare and eco-friendly standards, with an increase of nearly 10% after being provided with information of the sector’s environmental impacts. These findings support some of the current climate change mitigation strategies in the national cattle industry while highlighting relevant opportunities and trade-offs in the context of a developing country.

Suggested Citation

  • Andrés Charry & Manuel Narjes & Karen Enciso & Michael Peters & Stefan Burkart, 2019. "Sustainable intensification of beef production in Colombia—Chances for product differentiation and price premiums," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 7(1), pages 1-18, December.
  • Handle: RePEc:spr:agfoec:v:7:y:2019:i:1:d:10.1186_s40100-019-0143-7
    DOI: 10.1186/s40100-019-0143-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40100-019-0143-7
    File Function: Abstract
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sparke, Kai & Menrad, Klaus, 2006. "Cross-European and functional food related consumer segmentation for new product development," 98th Seminar, June 29-July 2, 2006, Chania, Crete, Greece 10084, European Association of Agricultural Economists.
    2. Van Loo, Ellen J. & Caputo, Vincenzina & Nayga, Rodolfo M. & Verbeke, Wim, 2014. "Consumers’ valuation of sustainability labels on meat," Food Policy, Elsevier, vol. 49(P1), pages 137-150.
    3. Tonsor, Glynn T. & Olynk, Nicole & Wolf, Christopher, 2009. "Consumer Preferences for Animal Welfare Attributes: The Case of Gestation Crates," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(3), pages 713-730, December.
    4. Jayson L. Lusk & Ted C. Schroeder, 2004. "Are Choice Experiments Incentive Compatible? A Test with Quality Differentiated Beef Steaks," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 467-482.
    5. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    6. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    7. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    8. Clark, Beth & Stewart, Gavin B. & Panzone, Luca A. & Kyriazakis, Ilias & Frewer, Lynn J., 2017. "Citizens, consumers and farm animal welfare: A meta-analysis of willingness-to-pay studies," Food Policy, Elsevier, vol. 68(C), pages 112-127.
    9. Li, Xiaogu & Jensen, Kimberly L. & Clark, Christopher D. & Lambert, Dayton M., 2016. "Consumer willingness to pay for beef grown using climate friendly production practices," Food Policy, Elsevier, vol. 64(C), pages 93-106.
    10. Nick Hanley & Douglas MacMillan & Robert E. Wright & Craig Bullock & Ian Simpson & Dave Parsisson & Bob Crabtree, 1998. "Contingent Valuation Versus Choice Experiments: Estimating the Benefits of Environmentally Sensitive Areas in Scotland," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahon, N. & Crute, I. & Di Bonito, M. & Simmons, E.A. & Islam, M.M., 2018. "Towards a broad-based and holistic framework of Sustainable Intensification indicators," Land Use Policy, Elsevier, vol. 77(C), pages 576-597.
    2. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    3. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, Open Access Journal, vol. 10(2), pages 1-13, February.
    4. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    5. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    6. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    7. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, Open Access Journal, vol. 12(14), pages 1-1, July.
    8. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).
    9. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    10. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, Open Access Journal, vol. 10(9), pages 1-41, September.
    11. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, Open Access Journal, vol. 9(5), pages 1-13, April.
    12. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.
    13. Kathrin Hasler & Hans-Werner Olfs & Onno Omta & Stefanie Bröring, 2016. "Drivers for the Adoption of Eco-Innovations in the German Fertilizer Supply Chain," Sustainability, MDPI, Open Access Journal, vol. 8(8), pages 1-18, July.
    14. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, Open Access Journal, vol. 7(12), pages 1-21, December.
    15. Maraseni, Tek Narayan & Cockfield, Geoff, 2015. "The financial implications of converting farmland to state-supported environmental plantings in the Darling Downs region, Queensland," Agricultural Systems, Elsevier, vol. 135(C), pages 57-65.
    16. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    17. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de, Enero.
    18. Sari J Himanen & Hanna Mäkinen & Karoliina Rimhanen & Riitta Savikko, 2016. "Engaging Farmers in Climate Change Adaptation Planning: Assessing Intercropping as a Means to Support Farm Adaptive Capacity," Agriculture, MDPI, Open Access Journal, vol. 6(3), pages 1-13, July.
    19. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    20. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:agfoec:v:7:y:2019:i:1:d:10.1186_s40100-019-0143-7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.