IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i4p971-988.html
   My bibliography  Save this article

The impact of eco-environmental regulation on green energy efficiency in China - Based on spatial economic analysis

Author

Listed:
  • Mingran Wu

Abstract

To figure out at what extent of China's investment in energy technology in recent years has helped economic growth and improved the environment. From the basic theory of environmental regulation’s influence on energy consumption efficiency, this study uses the super-efficiency slack base model to measure the green energy efficiency of 30 provinces in China from 2010 to 2019, and uses the kernel density function to analyze evolution trajectory. Then, the spatial Dubin model is used to test the influence of some important economic variables. The results of value show that although China's green energy efficiency improved significantly from 2010 to 2019, the overall performance was lacking. However, the overall efficiency value was significantly improved during the study period. Moreover, the efficiency value was closely related to the performance of economic development. From the dynamic trajectory perspective, efficiency values of all years show the type of "two peaks".Altough the width between the two peaks did not change noticeably, but the efficiency still had a significantly improved. In addition, according to the results of spatial economic regression analysis, eco-environmental constraints, foreign direct investment, and industrial agglomeration were not conducive to the efficiency value, while industrial structure and manufacturing enterprise scale had positive effects. In addition, the influence effects had obvious spatial phenomena. Therefore, for the Chinese government, enterprises and society, the next step is not only to vigorously exploit energy-saving and emission reduction technologies to improve energy consumption efficiency but also to establish reasonable environmental regulation policies to push enterprises to produce in a cleaner way. Additionally, a reasonable regional development plan should be established to promote the rational distribution and flow of the energy industry across different places. This paper provides a novel perspective for the study of energy input and usage.

Suggested Citation

  • Mingran Wu, 2023. "The impact of eco-environmental regulation on green energy efficiency in China - Based on spatial economic analysis," Energy & Environment, , vol. 34(4), pages 971-988, June.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:4:p:971-988
    DOI: 10.1177/0958305X211072435
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211072435
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211072435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cárdenas Rodríguez, Miguel & Dupont-Courtade, Laura & Oueslati, Walid, 2016. "Air pollution and urban structure linkages: Evidence from European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1-9.
    2. Li, Mengjie & Du, Weijian, 2021. "Can Internet development improve the energy efficiency of firms: Empirical evidence from China," Energy, Elsevier, vol. 237(C).
    3. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
    4. Wu, Mingran & Zhao, Min & Wu, Zhaodan, 2019. "Evaluation of development level and economic contribution ratio of science and technology innovation in eastern China," Technology in Society, Elsevier, vol. 59(C).
    5. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    6. Hancevic, Pedro Ignacio, 2016. "Environmental regulation and productivity: The case of electricity generation under the CAAA-1990," Energy Economics, Elsevier, vol. 60(C), pages 131-143.
    7. Wang, Yun & Sun, Xiaohua & Guo, Xu, 2019. "Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors," Energy Policy, Elsevier, vol. 132(C), pages 611-619.
    8. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2012. "Energy consumption, economic growth and CO2 emissions in Middle East and North African countries," Energy Policy, Elsevier, vol. 45(C), pages 342-349.
    9. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    10. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    11. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    12. Cagno, Enrico & Ramirez-Portilla, Andres & Trianni, Andrea, 2015. "Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector," Energy Policy, Elsevier, vol. 83(C), pages 240-256.
    13. Sabuj Kumar Mandal & Anup Kumar Bhandari, 2020. "Does Win-Win Opportunity Always Result in Pollution Abatement? An Application of Directional Distance Function to Indian Cement Industry," Journal of Developing Areas, Tennessee State University, College of Business, vol. 54(4), pages 161-174, October-D.
    14. George R. Zodrow, 2019. "Grandfather Rules and the Theory of Optimal Tax Reform," World Scientific Book Chapters, in: George R Zodrow (ed.), TAXATION IN THEORY AND PRACTICE Selected Essays of George R. Zodrow, chapter 3, pages 59-93, World Scientific Publishing Co. Pte. Ltd..
    15. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    16. Herrerias, M.J. & Cuadros, A. & Luo, D., 2016. "Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions," Applied Energy, Elsevier, vol. 162(C), pages 1374-1384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ran Wang & Rong Wang, 2023. "Exploring Financial Agglomeration and the Impact of Environmental Regulation on the Efficiency of the Green Economy: Fresh Evidence from 30 Regions in China," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    2. Waleed Kalf Al-Zoubi, 2024. "Economic Development in the Digital Economy: A Bibliometric Review," Economies, MDPI, vol. 12(3), pages 1-28, February.
    3. Haitao Wu & Yu Hao & Chuanzhen Geng & Weiheng Sun & Youcheng Zhou & Feiling Lu, 2023. "Ways to improve cross-regional resource allocation: Does the development of digitalization matter?," Journal of Economic Analysis, Anser Press, vol. 2(4), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuping Cheng & Lingjie Meng & Weizhong Wang, 2022. "The Impact of Environmental Regulation on Green Energy Technology Innovation—Evidence from China," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    2. Zhuanlan Sun & Demi Zhu, 2023. "Investigating environmental regulation effects on technological innovation: A meta-regression analysis," Energy & Environment, , vol. 34(3), pages 463-492, May.
    3. Zhao, Aiwu & Wang, Jingyi & Sun, Zhenzhen & Guan, Hongjun, 2022. "Environmental taxes, technology innovation quality and firm performance in China—A test of effects based on the Porter hypothesis," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 309-325.
    4. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    5. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    6. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    7. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    8. Wu, Haitao & Xu, Lina & Ren, Siyu & Hao, Yu & Yan, Guoyao, 2020. "How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model," Resources Policy, Elsevier, vol. 67(C).
    9. Pan, Xiongfeng & Ai, Bowei & Li, Changyu & Pan, Xianyou & Yan, Yaobo, 2019. "Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 428-435.
    10. Zhang, Yixiang & Xiong, Yali & Li, Feng & Cheng, Jinhua & Yue, Xiaochen, 2020. "Environmental regulation, capital output and energy efficiency in China: An empirical research based on integrated energy prices," Energy Policy, Elsevier, vol. 146(C).
    11. Guimei Wang & Muhammad Salman, 2023. "The impacts of heterogeneous environmental regulations on green economic efficiency from the perspective of urbanization: a dynamic threshold analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9485-9516, September.
    12. Xie, Li & Li, Zexin & Ye, Xiuhua & Jiang, Yanru, 2021. "Environmental regulation and energy investment structure: Empirical evidence from China's power industry," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Zhang, Yijun & Li, Xiaoping & Song, Yi & Jiang, Feitao, 2021. "Can green industrial policy improve total factor productivity? Firm-level evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 51-62.
    14. Zhou, Lin & Fan, Jianshuang & Hu, Mingzhi & Yu, Xiaofen, 2024. "Clean air policy and green total factor productivity: Evidence from Chinese prefecture-level cities," Energy Economics, Elsevier, vol. 133(C).
    15. Li, Yuchen & Meng, Jiayin & Zhou, Ruifan & Wang, Ying, 2024. "Does governmental venture capital (GVC) advance green innovation? Big data evidence from China," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 772-788.
    16. Croce, Annalisa & Toschi, Laura & Ughetto, Elisa & Zanni, Sara, 2024. "Cleantech and policy framework in Europe: A machine learning approach," Energy Policy, Elsevier, vol. 186(C).
    17. Shao, Jun & Wang, Lianghu, 2023. "Can new-type urbanization improve the green total factor energy efficiency? Evidence from China," Energy, Elsevier, vol. 262(PB).
    18. Liu, Wei & Zhao, Zhihui & Wen, Zhao & Cheng, Shixiong, 2022. "Environmental regulation and OFDI: Evidence from Chinese listed firms," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 191-208.
    19. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    20. Liu, Xiaoguang & Ji, Qiang & Yu, Jian, 2021. "Sustainable development goals and firm carbon emissions: Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:4:p:971-988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.