IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i2p263-282.html
   My bibliography  Save this article

Price and subsidy under uncertainty: Real-option approach to optimal investment decisions on energy storage with solar PV

Author

Listed:
  • Jingyu Qu
  • Wooyoung Jeon

Abstract

Renewable generation sources still have not achieved economic validity in many countries including Korea, and require subsidies to support the transition to a low-carbon economy. An initial Feed-In Tariff (FIT) was adopted to support the deployment of renewable energy in Korea until 2011 and then was switched to the Renewable Portfolio Standard (RPS) to implement more market-oriented mechanisms. However, high volatilities in electricity prices and subsidies under the RPS scheme have weakened investment incentives. In this study we estimate how the multiple price volatilities under the RPS scheme affect the optimal investment decisions of energy storage projects, whose importance is increasing rapidly because they can mitigate the variability and uncertainty of solar and wind generation in the power system. We applied mathematical analysis based on real-option methods to estimate the optimal trigger price for investment in energy-storage projects with and without multiple price volatilities. We found that the optimal trigger price of subsidy called the Renewable Energy Certificate (REC) under multiple price volatilities is 10.5% higher than that under no price volatilities. If the volatility of the REC price gets doubled, the project requires a 26.6% higher optimal investment price to justify the investment against the increased risk. In the end, we propose an auction scheme that has the advantage of both RPS and FIT in order to minimize the financial burden of the subsidy program by eliminating subsidy volatility and find the minimum willingness-to-accept price for investors.

Suggested Citation

  • Jingyu Qu & Wooyoung Jeon, 2022. "Price and subsidy under uncertainty: Real-option approach to optimal investment decisions on energy storage with solar PV," Energy & Environment, , vol. 33(2), pages 263-282, March.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:2:p:263-282
    DOI: 10.1177/0958305X21992291
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X21992291
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X21992291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
    2. Lee, Hyoungsuk & Choi, Yongrok & Seo, Hyungjun, 2020. "Comparative analysis of the R&D investment performance of Korean local governments," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    3. Henao, Felipe & Rodriguez, Yeny & Viteri, Juan Pablo & Dyner, Isaac, 2019. "Optimising the insertion of renewables in the Colombian power sector," Renewable Energy, Elsevier, vol. 132(C), pages 81-92.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    6. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    7. Walsh, D.M. & O'Sullivan, K. & Lee, W.T. & Devine, M.T., 2014. "When to invest in carbon capture and storage technology: A mathematical model," Energy Economics, Elsevier, vol. 42(C), pages 219-225.
    8. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    9. Pringles, Rolando & Olsina, Fernando & Garcés, Francisco, 2015. "Real option valuation of power transmission investments by stochastic simulation," Energy Economics, Elsevier, vol. 47(C), pages 215-226.
    10. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    11. Somayeh Heydari & Nick Ovenden & Afzal Siddiqui, 2012. "Real options analysis of investment in carbon capture and sequestration technology," Computational Management Science, Springer, vol. 9(1), pages 109-138, February.
    12. Barbry, Adrien & Anjos, Miguel F. & Delage, Erick & Schell, Kristen R., 2019. "Robust self-scheduling of a price-maker energy storage facility in the New York electricity market," Energy Economics, Elsevier, vol. 78(C), pages 629-646.
    13. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    14. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
    15. Lin, Boqiang & Wesseh, Presley K., 2013. "Valuing Chinese feed-in tariffs program for solar power generation: A real options analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 474-482.
    16. Alvarado, Rafael & Deng, Qiushi & Tillaguango, Brayan & Méndez, Priscila & Bravo, Diana & Chamba, José & Alvarado-Lopez, María & Ahmad, Munir, 2021. "Do economic development and human capital decrease non-renewable energy consumption? Evidence for OECD countries," Energy, Elsevier, vol. 215(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    2. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    3. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    4. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    5. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    6. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    7. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    8. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    9. Assereto, Martina & Byrne, Julie, 2021. "No real option for solar in Ireland: A real option valuation of utility scale solar investment in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).
    11. Gazheli, Ardjan & van den Bergh, Jeroen, 2018. "Real options analysis of investment in solar vs. wind energy: Diversification strategies under uncertain prices and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2693-2704.
    12. Yu, Shiwei & Li, Zhenxi & Wei, Yi-Ming & Liu, Lancui, 2019. "A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes," Energy, Elsevier, vol. 189(C).
    13. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    14. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    15. Walsh, D.M. & O'Sullivan, K. & Lee, W.T. & Devine, M.T., 2014. "When to invest in carbon capture and storage technology: A mathematical model," Energy Economics, Elsevier, vol. 42(C), pages 219-225.
    16. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    17. Liu, Xiaoran & Ronn, Ehud I., 2020. "Using the binomial model for the valuation of real options in computing optimal subsidies for Chinese renewable energy investments," Energy Economics, Elsevier, vol. 87(C).
    18. Liu, Shen & Colson, Gregory & Wetzstein, Michael, 2018. "Biodiesel investment in a disruptive tax-credit policy environment," Energy Policy, Elsevier, vol. 123(C), pages 19-30.
    19. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    20. Sim, Jaehun & Kim, Chae-Soo, 2019. "The value of renewable energy research and development investments with default consideration," Renewable Energy, Elsevier, vol. 143(C), pages 530-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:2:p:263-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.