IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas0360544220322106.html
   My bibliography  Save this article

A techno-economic assessment of hybrid energy systems in rural Pakistan

Author

Listed:
  • Ali, Fahad
  • Ahmar, Muhammad
  • Jiang, Yuexiang
  • AlAhmad, Mohammad

Abstract

This paper aims to develop a rural energy system design framework and analyzes the techno-economic feasibility of potential hybrid energy systems (HES) for rural electrification of a village in district Dera Ismail Khan, Pakistan. At first, a comprehensive resource assessment is carried out. Subsequently, system size optimization and techno-economic viability is conducted using a standard software tool HOMER PRO to fulfil the peak-load demand. Due to the deficiency of wind power and biomass resources at the targeted site, the results indicate that a community power system based on solar PV as a primary energy source, batteries as a storage, diesel generator as a backup, and a time-constrained availability of national grid is the most feasible solution. Sensitivity analysis using macro-economic variables and derating factor of PV has been opted to ensure robustness and commercial applicability of the proposed HES. The study finds that levelized cost of electricity (LCOE) in grid-integrated systems (0.072$/kWh and 0.078$/kWh) is economical than the off-grid systems (0.145$/kWh and 0.167$/kWh). The obtained results indicate commercial efficacy of the grid-integrated configurations, where LCOE is lower than the existing government tariff. Most importantly, this hybrid energy system is capable of providing a 24/7 continuous electricity to the site under consideration.

Suggested Citation

  • Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322106
    DOI: 10.1016/j.energy.2020.119103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Arshad Khan & Usman Ahmad, 2008. "Energy Demand in Pakistan: A Disaggregate Analysis," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 437-455.
    2. Odou, Oluwarotimi Delano Thierry & Bhandari, Ramchandra & Adamou, Rabani, 2020. "Hybrid off-grid renewable power system for sustainable rural electrification in Benin," Renewable Energy, Elsevier, vol. 145(C), pages 1266-1279.
    3. Jaiswal, Abhishek, 2017. "Lithium-ion battery based renewable energy solution for off-grid electricity: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 922-934.
    4. Raturi, Atul & Singh, Aman & Prasad, Ravita D., 2016. "Grid-connected PV systems in the Pacific Island Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 419-428.
    5. Urpelainen, Johannes, 2016. "Energy poverty and perceptions of solar power in marginalized communities: Survey evidence from Uttar Pradesh, India," Renewable Energy, Elsevier, vol. 85(C), pages 534-539.
    6. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    7. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    8. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    9. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    10. Lau, K.Y. & Muhamad, N.A. & Arief, Y.Z. & Tan, C.W. & Yatim, A.H.M., 2016. "Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes," Energy, Elsevier, vol. 102(C), pages 65-82.
    11. Kumar, Jitendra & Suryakiran, B.V. & Verma, Ashu & Bhatti, T.S., 2019. "Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India," Energy, Elsevier, vol. 178(C), pages 176-185.
    12. Khan, Hassan Abbas & Ahmad, Husnain Fateh & Nasir, Mashood & Nadeem, Muhammad Fatiq & Zaffar, Nauman Ahmed, 2018. "Decentralised electric power delivery for rural electrification in Pakistan," Energy Policy, Elsevier, vol. 120(C), pages 312-323.
    13. Valasai, Gordhan Das & Uqaili, Muhammad Aslam & Memon, HafeezUr Rahman & Samoo, Saleem Raza & Mirjat, Nayyar Hussain & Harijan, Khanji, 2017. "Overcoming electricity crisis in Pakistan: A review of sustainable electricity options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 734-745.
    14. Khan, Hassan A. & Pervaiz, Saad, 2013. "Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 147-154.
    15. Peter Alstone & Dimitry Gershenson & Daniel M. Kammen, 2015. "Decentralized energy systems for clean electricity access," Nature Climate Change, Nature, vol. 5(4), pages 305-314, April.
    16. Azimoh, Chukwuma Leonard & Klintenberg, Patrik & Mbohwa, Charles & Wallin, Fredrik, 2017. "Replicability and scalability of mini-grid solution to rural electrification programs in sub-Saharan Africa," Renewable Energy, Elsevier, vol. 106(C), pages 222-231.
    17. Fahad Ali & RongRong He & YueXiang Jiang, 2018. "Size, Value and Business Cycle Variables. The Three-Factor Model and Future Economic Growth: Evidence from an Emerging Market," Economies, MDPI, vol. 6(1), pages 1-24, February.
    18. Khan, Muhammad Arshad & Abbas, Faisal, 2016. "The dynamics of electricity demand in Pakistan: A panel cointegration analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1159-1178.
    19. Rauf, Omer & Wang, Shujie & Yuan, Peng & Tan, Junzhe, 2015. "An overview of energy status and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 892-931.
    20. Herington, M.J. & van de Fliert, E. & Smart, S. & Greig, C. & Lant, P.A., 2017. "Rural energy planning remains out-of-step with contemporary paradigms of energy access and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1412-1419.
    21. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    22. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    23. Imran, Muhammad & Amir, Namra, 2015. "A short-run solution to the power crisis of Pakistan," Energy Policy, Elsevier, vol. 87(C), pages 382-391.
    24. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    25. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    26. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    27. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    28. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    29. Kessides, Ioannis N., 2013. "Chaos in power: Pakistan's electricity crisis," Energy Policy, Elsevier, vol. 55(C), pages 271-285.
    30. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.
    31. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    32. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    33. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    34. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.
    35. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    36. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    37. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    2. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    3. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    5. Khan, Faizan A. & Pal, Nitai & Saeed, Syed H., 2021. "Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective," Energy, Elsevier, vol. 233(C).
    6. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Das, Barun K. & Tushar, Mohammad Shahed H.K. & Zaman, Forhad, 2021. "Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads," Energy, Elsevier, vol. 215(PA).
    8. Khan, Hassan Abbas & Ahmad, Husnain Fateh & Nasir, Mashood & Nadeem, Muhammad Fatiq & Zaffar, Nauman Ahmed, 2018. "Decentralised electric power delivery for rural electrification in Pakistan," Energy Policy, Elsevier, vol. 120(C), pages 312-323.
    9. Bin Ye & Minhua Zhou & Dan Yan & Yin Li, 2020. "Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China," Energies, MDPI, vol. 13(23), pages 1-25, November.
    10. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    11. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    12. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    13. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    14. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    15. Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    16. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.
    17. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    18. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    19. Ceran, Bartosz & Mielcarek, Agata & Hassan, Qusay & Teneta, Janusz & Jaszczur, Marek, 2021. "Aging effects on modelling and operation of a photovoltaic system with hydrogen storage," Applied Energy, Elsevier, vol. 297(C).
    20. Ashfaq, Asad & Ianakiev, Anton, 2018. "Features of fully integrated renewable energy atlas for Pakistan; wind, solar and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 14-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.