IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6223-d451479.html
   My bibliography  Save this article

Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China

Author

Listed:
  • Bin Ye

    (School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China)

  • Minhua Zhou

    (School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China)

  • Dan Yan

    (School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China)

  • Yin Li

    (Sun Yat-sen Business School, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

The application of renewable energy has become increasingly widespread worldwide because of its advantages of resource abundance and environmental friendliness. However, the deployment of hybrid renewable energy systems (HRESs) varies greatly from city to city due to large differences in economic endurance, social acceptance and renewable energy endowment. Urban policymakers thus face great challenges in promoting local clean renewable energy utilization. To address these issues, this paper proposes a combined multi-objective optimization method, and the specific process of this method is described as follows. The Hybrid Optimization Model for electric energy was first used to examine five different scenarios of renewable energy systems. Then, the Technique for Order Preference by Similarity to an Ideal Solution was applied using eleven comprehensive indicators to determine the best option for the target area using three different weights. To verify the feasibility of this method, Xiongan New District (XND) was selected as an example to illustrate the process of selecting the optimal HRES. The empirical results of simulation tools and multi-objective decision-making show that the Photovoltaic-Diesel-Battery off-grid energy system (option III) and PV-Diesel-Hydrogen-Battery off-grid energy system (option V) are two highly feasible schemes for an HRES in XND. The cost of energy for these two options is 0.203 and 0.209 $/kWh, respectively, and the carbon dioxide emissions are 14,473 t/yr and 345 t/yr, respectively. Our results provide a reference for policymakers in deploying an HRES in the XND area.

Suggested Citation

  • Bin Ye & Minhua Zhou & Dan Yan & Yin Li, 2020. "Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China," Energies, MDPI, vol. 13(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6223-:d:451479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Oberschelp & S. Pfister & C. E. Raptis & S. Hellweg, 2019. "Global emission hotspots of coal power generation," Nature Sustainability, Nature, vol. 2(2), pages 113-121, February.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    4. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    5. Hoseinzadeh, Siamak & Ghasemi, Mohammad Hadi & Heyns, Stephan, 2020. "Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems," Renewable Energy, Elsevier, vol. 160(C), pages 323-332.
    6. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    7. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    8. Song, Yazhi & Liu, Tiansen & Ye, Bin & Li, Yin, 2020. "Linking carbon market and electricity market for promoting the grid parity of photovoltaic electricity in China," Energy, Elsevier, vol. 211(C).
    9. AbdelAzim, Ahmed Ibrahim & Ibrahim, Ahmed Mohamed & Aboul-Zahab, Essam Mohamed, 2017. "Development of an energy efficiency rating system for existing buildings using Analytic Hierarchy Process – The case of Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 414-425.
    10. Kornelakis, Aris & Marinakis, Yannis, 2010. "Contribution for optimal sizing of grid-connected PV-systems using PSO," Renewable Energy, Elsevier, vol. 35(6), pages 1333-1341.
    11. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.
    12. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    13. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    14. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.
    15. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Liu & Qinliang Tan & Jian Han & Mingxin Guo, 2021. "Energy–Water–CO 2 Synergetic Optimization Based on a Mixed-Integer Linear Resource Planning Model Concerning the Demand Side Management in Beijing’s Power Structure Transformation," Energies, MDPI, vol. 14(11), pages 1-17, June.
    2. Charles Newbold & Mohammad Akrami & Mahdieh Dibaj, 2021. "Scenarios, Financial Viability and Pathways of Localized Hybrid Energy Generation Systems around the United Kingdom," Energies, MDPI, vol. 14(18), pages 1-27, September.
    3. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    4. Ali, Tausif & Aghaloo, Kamaleddin & Chiu, Yie-Ru & Ahmad, Munir, 2022. "Lessons learned from the COVID-19 pandemic in planning the future energy systems of developing countries using an integrated MCDM approach in the off-grid areas of Bangladesh," Renewable Energy, Elsevier, vol. 189(C), pages 25-38.
    5. Limei Liu & Xinyun Chen & Yi Yang & Junfeng Yang & Jie Chen, 2023. "Prioritization of Off-Grid Hybrid Renewable Energy Systems for Residential Communities in China Considering Public Participation with Basic Uncertain Linguistic Information," Sustainability, MDPI, vol. 15(11), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    2. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    5. Popescu, Daniela & Dragomirescu, Andrei, 2024. "Cost-benefit analysis of a hydro-solar microsystem with Archimedean screw hydro turbine sized for a prosumer building," Renewable Energy, Elsevier, vol. 226(C).
    6. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    7. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    8. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    9. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    10. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    11. Sajid Ali & Choon-Man Jang, 2020. "Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Remote Island," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    12. Das, Barun K. & Hasan, Mahmudul, 2021. "Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat," Energy, Elsevier, vol. 214(C).
    13. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    14. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    16. Kosmas A. Kavadias & Panagiotis Triantafyllou, 2021. "Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools," Energies, MDPI, vol. 14(24), pages 1-28, December.
    17. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    18. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    19. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    20. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6223-:d:451479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.