IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5602-d630622.html
   My bibliography  Save this article

Scenarios, Financial Viability and Pathways of Localized Hybrid Energy Generation Systems around the United Kingdom

Author

Listed:
  • Charles Newbold

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mohammad Akrami

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mahdieh Dibaj

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

Abstract

Decarbonisation is becoming a central aim of countries around the globe, ensuring the effects of climate change do not increase exponentially in the coming years. Renewable energy generation is at the core of this decarbonisation process, enabling economies to divorce themselves from a reliance on oil and coal. Hybrid energy systems can utilise multiple generation methods to supply electrical demand best. This paper investigates the use of localised hybrid energy systems around the UK, comparing the financial viability of solar, wind and hydrokinetic generation methods both as a hybrid system and individually in different scenarios. The significance of having localised hybrid energy systems is that they address two large problems within renewable energy generation, that of storage issues and also generating the electricity far away from where it is actually used, requiring extensive infrastructure. The microgrid optimisation software HOMER was used to simulate each of the generation methods alongside the national grid, including lithium ion batteries and converters to create a comprehensive hybrid system. Net Present Cost, which is the current value of all the costs of installing and operating the system over the project lifetime, was considered as the metric. The analysis finds that for each modelled location, wind turbines in combination with lithium ion batteries and a converter is the system with the lowest Net Present Cost, with the exception of Bristol, which also uses hydrokinetic turbines within the system. The findings indicate the extensive wind resources available within the UK, along with identifying that certain locations around the country also have very high potential for tidal power generation.

Suggested Citation

  • Charles Newbold & Mohammad Akrami & Mahdieh Dibaj, 2021. "Scenarios, Financial Viability and Pathways of Localized Hybrid Energy Generation Systems around the United Kingdom," Energies, MDPI, vol. 14(18), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5602-:d:630622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Akrami & Samuel J. Gilbert & Mahdieh Dibaj & Akbar A. Javadi & Raziyeh Farmani & Alaa H. Salah & Hassan E. S. Fath & Abdelazim Negm, 2020. "Decarbonisation Using Hybrid Energy Solution: Case Study of Zagazig, Egypt," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Millward-Hopkins, J.T. & Tomlin, A.S. & Ma, L. & Ingham, D.B. & Pourkashanian, M., 2013. "Mapping the wind resource over UK cities," Renewable Energy, Elsevier, vol. 55(C), pages 202-211.
    3. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    4. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    5. Navid Majdi Nasab & Jeff Kilby & Leila Bakhtiaryfard, 2021. "Case Study of a Hybrid Wind and Tidal Turbines System with a Microgrid for Power Supply to a Remote Off-Grid Community in New Zealand," Energies, MDPI, vol. 14(12), pages 1-21, June.
    6. Tefera Mekonnen & Ramchandra Bhandari & Venkata Ramayya, 2021. "Modeling, Analysis and Optimization of Grid-Integrated and Islanded Solar PV Systems for the Ethiopian Residential Sector: Considering an Emerging Utility Tariff Plan for 2021 and Beyond," Energies, MDPI, vol. 14(11), pages 1-24, June.
    7. Bin Ye & Minhua Zhou & Dan Yan & Yin Li, 2020. "Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China," Energies, MDPI, vol. 13(23), pages 1-25, November.
    8. Nasser Alqahtani & Nazmiye Balta-Ozkan, 2021. "Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia," Energies, MDPI, vol. 14(13), pages 1-21, June.
    9. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Paulo N. Torres & Ana Sofia De Jesus & Ricardo A. Marques Lameirinhas, 2022. "How to Improve an Offshore Wind Station," Energies, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    3. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    4. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    5. Sergey Obukhov & Ahmed Ibrahim & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Power Balance Management of an Autonomous Hybrid Energy System Based on the Dual-Energy Storage," Energies, MDPI, vol. 12(24), pages 1-15, December.
    6. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    7. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    8. Jens Koehrsen, 2017. "Boundary Bridging Arrangements: A Boundary Work Approach to Local Energy Transitions," Sustainability, MDPI, vol. 9(3), pages 1-23, March.
    9. Le Thanh Tiep & Ngo Quang Huan & Tran Thi Thuy Hong, 2020. "The Impact of Renewable Energy on Sustainable Economic Growth in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 359-369.
    10. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    11. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    12. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Lybbert, M. & Ghaemi, Z. & Balaji, A.K. & Warren, R., 2021. "Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    15. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    16. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    17. Popescu, Gheorghe H. & Mieila, Mihai & Nica, Elvira & Andrei, Jean Vasile, 2018. "The emergence of the effects and determinants of the energy paradigm changes on European Union economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 768-774.
    18. De Silva, P.N.K. & Simons, S.J.R. & Stevens, P., 2016. "Economic impact analysis of natural gas development and the policy implications," Energy Policy, Elsevier, vol. 88(C), pages 639-651.
    19. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    20. Muhammad Aslam & Jae-Myeong Lee & Hyung-Seung Kim & Seung-Jae Lee & Sugwon Hong, 2019. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study," Energies, MDPI, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5602-:d:630622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.