IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4680-d410727.html
   My bibliography  Save this article

Decarbonisation Using Hybrid Energy Solution: Case Study of Zagazig, Egypt

Author

Listed:
  • Mohammad Akrami

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Samuel J. Gilbert

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mahdieh Dibaj

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Akbar A. Javadi

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Raziyeh Farmani

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Alaa H. Salah

    (City of Scientific Research and Technological Applications (SRTA), Alexandria 21934, Egypt)

  • Hassan E. S. Fath

    (Environmental Engineering Department, School of Energy Resources, Environment, Chemical and Petrochemical Engineering (EECE), Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt)

  • Abdelazim Negm

    (Water and Water Structures Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

Abstract

In this study, an analysis is carried out to determine the optimal application of multiple renewable energy resources, namely wind and solar, to provide electricity requirements for green smart cities and environments. This was done to determine the potential of renewable energy to provide clean, economically viable energy for the case study of Zagazig, located at 30°34′ N 31°30′ E in the North East of Egypt. The relevant data surrounding the production of energy were collected, including the meteorological data from NASA, and specifications regarding renewable resources including solar panels, wind turbines, and storage batteries. Then a hybrid model was constructed consisting of Photovoltaics (PV) panels, wind turbines, a converter, and storage batteries. Once the model was constructed, meteorological data were added alongside average daily demand and cost of electricity per kWh. The optimal solution for Zagazig consisted of 181,000 kW of solar panels feeding directly into the grid. This system had the lowest Net Present Cost (NPC) of the simulations run of US$1,361,029,000 and a net reduction of 156,355 tonnes of CO 2 per year.

Suggested Citation

  • Mohammad Akrami & Samuel J. Gilbert & Mahdieh Dibaj & Akbar A. Javadi & Raziyeh Farmani & Alaa H. Salah & Hassan E. S. Fath & Abdelazim Negm, 2020. "Decarbonisation Using Hybrid Energy Solution: Case Study of Zagazig, Egypt," Energies, MDPI, vol. 13(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4680-:d:410727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sorour, M.M. & Ghoneim, A.A., 1994. "Feasibility study of solar heating and cooling systems at different localities in Egypt," Renewable Energy, Elsevier, vol. 5(1), pages 489-491.
    2. Nicolas Martinez & Youssef Benchaabane & Rosa Elvira Silva & Adrian Ilinca & Hussein Ibrahim & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(18), pages 1-18, September.
    3. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    4. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    5. Farid Antonio Barrozo Budes & Guillermo Valencia Ochoa & Luis Guillermo Obregon & Adriana Arango-Manrique & José Ricardo Núñez Álvarez, 2020. "Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro ® : A Case Study in Colombia," Energies, MDPI, vol. 13(7), pages 1-19, April.
    6. Patlitzianas, Konstantinos D., 2011. "Solar energy in Egypt: Significant business opportunities," Renewable Energy, Elsevier, vol. 36(9), pages 2305-2311.
    7. Alawaji, Saleh H., 2001. "Evaluation of solar energy research and its applications in Saudi Arabia -- 20 years of experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 59-77, March.
    8. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    9. Ghoneim, A.A. & Fisch, N. & Ammar, A.S.A. & Hahne, E., 1993. "Design of a solar water heating system for Alexandria, Egypt," Renewable Energy, Elsevier, vol. 3(6), pages 577-583.
    10. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Newbold & Mohammad Akrami & Mahdieh Dibaj, 2021. "Scenarios, Financial Viability and Pathways of Localized Hybrid Energy Generation Systems around the United Kingdom," Energies, MDPI, vol. 14(18), pages 1-27, September.
    2. Ahmed Abouaiana, 2022. "Rural Energy Communities as Pillar towards Low Carbon Future in Egypt: Beyond COP27," Land, MDPI, vol. 11(12), pages 1-18, December.
    3. Mohammad Akrami & Husain Alsari & Akbar A. Javadi & Mahdieh Dibaj & Raziyeh Farmani & Hassan E.S. Fath & Alaa H. Salah & Abdelazim Negm, 2020. "Analysing the Material Suitability and Concentration Ratio of a Solar-Powered Parabolic trough Collector (PTC) Using Computational Fluid Dynamics," Energies, MDPI, vol. 13(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    2. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    3. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    4. Alrashed, Farajallah & Asif, Muhammad, 2015. "Analysis of critical climate related factors for the application of zero-energy homes in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1395-1403.
    5. Düştegör, Dilek & Sultana, Nahid & Felemban, Noor & Al Qahtani, Deemah, 2018. "A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications," Utilities Policy, Elsevier, vol. 50(C), pages 26-39.
    6. Arash Farnoosh & Frederic Lantz, 2015. "Decarbonisation of electricity generation in an oil & gas producing country : "A sensitivity analysis over the power sector in Egypt"," Working Papers hal-02475491, HAL.
    7. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    8. Ramli, Makbul A.M. & Twaha, Ssennoga & Al-Hamouz, Zakariya, 2017. "Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 287-297.
    9. Abdullahi Abubakar Mas’ud & Asan Vernyuy Wirba & Saud J. Alshammari & Firdaus Muhammad-Sukki & Mu’azu Mohammed Abdullahi & Ricardo Albarracín & Mohammed Ziaul Hoq, 2018. "Solar Energy Potentials and Benefits in the Gulf Cooperation Council Countries: A Review of Substantial Issues," Energies, MDPI, vol. 11(2), pages 1-20, February.
    10. Ramli, Makbul A.M. & Hiendro, Ayong & Al-Turki, Yusuf A., 2016. "Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia," Renewable Energy, Elsevier, vol. 91(C), pages 374-385.
    11. Islam, M.R. & Mekhilef, S. & Saidur, R., 2013. "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 456-468.
    12. Mehran Dehghan & Carlos F. Pfeiffer & Elyas Rakhshani & Reza Bakhshi-Jafarabadi, 2021. "A Review on Techno-Economic Assessment of Solar Water Heating Systems in the Middle East," Energies, MDPI, vol. 14(16), pages 1-28, August.
    13. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    14. Shouman, Enas R. & El Shenawy, E.T. & Khattab, N.M., 2016. "Market financial analysis and cost performance for photovoltaic technology through international and national perspective with case study for Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 540-549.
    15. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    16. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    17. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    18. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    19. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    20. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4680-:d:410727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.