IDEAS home Printed from https://ideas.repec.org/a/rar/journl/0032.html
   My bibliography  Save this article

The Effects of Climate Change on Agriculture

Author

Listed:
  • Francesco Bosello
  • Jian Zhang

Abstract

The economy implications that climate change holds for agricultural sectors in 2050 are estimated using a static computable general equilibrium model. A peculiar feature of this exercise is the interfacing of the economic model with a climate model forecasting temperature increase in the relevant year and a crop-growth model estimating climate change impact on cereal productivity. The main results of the study show, on one hand, the limited influence of climate change on world food supply and welfare, but, on the other hand, its important distributional consequences, the negative effects being concentrated mainly on the developing countries. The simulation exercise is introduced by a broad overview of the relevant literature.

Suggested Citation

  • Francesco Bosello & Jian Zhang, 2006. "The Effects of Climate Change on Agriculture," QA - Rivista dell'Associazione Rossi-Doria, Associazione Rossi Doria, issue 1, March.
  • Handle: RePEc:rar:journl:0032
    as

    Download full text from publisher

    File URL: http://www.francoangeli.it/riviste/Scheda_Riviste.asp?IDArticolo=26824&Tipo=Articolo%20PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darwin, Roy & Tsigas, Marinos E. & Lewandrowski, Jan & Raneses, Anton, 1995. "World Agriculture and Climate Change: Economic Adaptations," Agricultural Economic Reports 33933, United States Department of Agriculture, Economic Research Service.
    2. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    3. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    4. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    5. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    6. Roy Darwin & Richard Tol, 2001. "Estimates of the Economic Effects of Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 113-129, June.
    7. Richard M. Adams & Kelly J. Bryant & Bruce A. Mccarl & David M. Legler & James O'Brien & Andrew Solow & Rodney Weiher, 1995. "Value Of Improved Long‐Range Weather Information," Contemporary Economic Policy, Western Economic Association International, vol. 13(3), pages 10-19, July.
    8. Adams, Richard M. & McCarl, Bruce A. & Dudek, Daniel J. & Glyer, J. David, 1988. "Implications Of Global Climate Change For Western Agriculture," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 13(2), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    2. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    3. Fátima Gonçalves & Cristina Carlos & Luís Crespo & Vera Zina & Amália Oliveira & Juliana Salvação & José Alberto Pereira & Laura Torres, 2021. "Soil Arthropods in the Douro Demarcated Region Vineyards: General Characteristics and Ecosystem Services Provided," Sustainability, MDPI, vol. 13(14), pages 1-35, July.
    4. Shuaishuai Li & Jiahua Zhang & Sha Zhang & Yun Bai & Dan Cao & Tiantian Cheng & Zhongtai Sun & Qi Liu & Til Prasad Pangali Sharma, 2021. "Impacts of Future Climate Changes on Spatio-Temporal Distribution of Terrestrial Ecosystems over China," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    5. Zhenhuan Liu & Guojie Zhang & Peng Yang, 2016. "Geographical Variation of Climate Change Impact on Rice Yield in the Rice-Cropping Areas of Northeast China during 1980–2008," Sustainability, MDPI, vol. 8(7), pages 1-12, July.
    6. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    7. Surender Kumar & Madhu Khanna, 2023. "Distributional heterogeneity in climate change impacts and adaptation: Evidence from Indian agriculture," Working papers 332, Centre for Development Economics, Delhi School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bosello & Lorenza Campagnolo & Raffaello Cervigni & Fabio Eboli, 2018. "Climate Change and Adaptation: The Case of Nigerian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 787-810, April.
    2. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    3. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    4. Kanakasabai, Murali & Dillon, Carl R., 2004. "Potential For Farm Adaptation To Global Climatic Change In Kentucky," 2004 Annual meeting, August 1-4, Denver, CO 20422, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Weslem Rodrigues Faria & Eduardo Amaral Haddad, 2017. "Modeling Land Use And The Effects Of Climate Change In Brazil," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-37, February.
    6. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    7. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    8. Melania Michetti & Ramiro Parrado, 2012. "Improving Land-use Modelling within CGE to Assess Forest-based Mitigation Potential and Costs," Working Papers 2012.19, Fondazione Eni Enrico Mattei.
    9. Randhir, Timothy O. & Hertel, Thomas W., 2000. "Trade Liberalization as a Vehicle for Adapting to Global Warming," Agricultural and Resource Economics Review, Cambridge University Press, vol. 29(2), pages 159-172, October.
    10. Dixon, Bruce L. & Segerson, Kathleen, 1999. "Impacts Of Increased Climate Variability On The Profitability Of Midwest Agriculture," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 31(3), pages 1-13, December.
    11. Delin, Huang, 2012. "Policy Implications and Mitigation Potential in China Agricultural Greenhouse Gas Emission," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124848, International Association of Agricultural Economists.
    12. Paul Winters & Rinku Murgai & Elisabeth Sadoulet & Alain de Janvry & George Frisvold, 1998. "Economic and Welfare Impacts of Climate Change on Developing Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 1-24, July.
    13. Shaik, Saleem & Helmers, Glenn A., 2000. "Intertemporal And Interspatial Variability Of Climate Change On Dryland Winter Wheat Yield Trends," 2000 Annual meeting, July 30-August 2, Tampa, FL 21782, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    15. Jonathan Pycroft & Jan Abrell & Juan-Carlos Ciscar, 2016. "The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 225-253, June.
    16. Kerstin Ronneberger & Maria Berrittella & Francesco Bosello & Richard S.J. Tol, 2006. "Klum@Gtap: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment," Working Papers 2006.102, Fondazione Eni Enrico Mattei.
    17. BEN ZAIED, YOUNES & Zouabi, Oussama, 2015. "Climate change impacts on agriculture: A panel cointegration approach and application to Tunisia," MPRA Paper 64711, University Library of Munich, Germany.
    18. Haddad, Salwa & Britz, Wolfgang & Börner, Jan, 2017. "Impacts Of Increased Forest Biomass Demand In The European Bioeconomy," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261986, German Association of Agricultural Economists (GEWISOLA).
    19. Fernández, Francisco J. & Blanco, Maria, 2014. "Integration of biophysical and agro-economic models to assess the economic effects of climate change on agriculture: A review of global and EU regional approaches," Economics Discussion Papers 2014-48, Kiel Institute for the World Economy (IfW Kiel).
    20. Schimmelpfennig, David & Lewandrowski, Jan & Tsigas, Marinos & Parry, Ian, 1996. "Agricultural Adaptation to Climate Change: Issues of Longrun Sustainability," Agricultural Economic Reports 262033, United States Department of Agriculture, Economic Research Service.

    More about this item

    Keywords

    Climate Change; Computable General Equilibrium Models; Agriculture;
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • N50 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - General, International, or Comparative
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rar:journl:0032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/rossiea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.