IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246331.html
   My bibliography  Save this article

Investor attention and cryptocurrency: Evidence from the Bitcoin market

Author

Listed:
  • Panpan Zhu
  • Xing Zhang
  • You Wu
  • Hao Zheng
  • Yinpeng Zhang

Abstract

This paper adds to the growing literature of cryptocurrency and behavioral finance. Specifically, we investigate the relationships between the novel investor attention and financial characteristics of Bitcoin, i.e., return and realized volatility, which are the two most important characteristics of one certain asset. Our empirical results show supports in the behavior finance area and argue that investor attention is the granger cause to changes in Bitcoin market both in return and realized volatility. Moreover, we make in-depth investigations by exploring the linear and non-linear connections of investor attention on Bitcoin. The results indeed demonstrate that investor attention shows sophisticated impacts on return and realized volatility of Bitcoin. Furthermore, we conduct one basic and several long horizons out-of-sample forecasts to explore the predictive ability of investor attention. The results show that compared with the traditional historical average benchmark model in forecasting technologies, investor attention improves prediction accuracy in Bitcoin return. Finally, we build economic portfolios based on investor attention and argue that investor attention can further generate significant economic values. To sum up, investor attention is a non-negligible pricing factor for Bitcoin asset.

Suggested Citation

  • Panpan Zhu & Xing Zhang & You Wu & Hao Zheng & Yinpeng Zhang, 2021. "Investor attention and cryptocurrency: Evidence from the Bitcoin market," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-28, February.
  • Handle: RePEc:plo:pone00:0246331
    DOI: 10.1371/journal.pone.0246331
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246331
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246331&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Philippas, Dionisis & Rjiba, Hatem & Guesmi, Khaled & Goutte, Stéphane, 2019. "Media attention and Bitcoin prices," Finance Research Letters, Elsevier, vol. 30(C), pages 37-43.
    4. Yu, Miao, 2019. "Forecasting Bitcoin volatility: The role of leverage effect and uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    5. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
    6. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    7. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    8. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    9. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," Harvard Institute of Economic Research Working Papers 2084, Harvard - Institute of Economic Research.
    10. Al-Yahyaee, Khamis Hamed & Rehman, Mobeen Ur & Mensi, Walid & Al-Jarrah, Idries Mohammad Wanas, 2019. "Can uncertainty indices predict Bitcoin prices? A revisited analysis using partial and multivariate wavelet approaches," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 47-56.
    11. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    12. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    13. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Does the introduction of futures improve the efficiency of Bitcoin?," Finance Research Letters, Elsevier, vol. 30(C), pages 367-370.
    14. Kapar, Burcu & Olmo, Jose, 2019. "An analysis of price discovery between Bitcoin futures and spot markets," Economics Letters, Elsevier, vol. 174(C), pages 62-64.
    15. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    16. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    17. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    18. Roger K. Loh, 2010. "Investor Inattention and the Underreaction to Stock Recommendations," Financial Management, Financial Management Association International, vol. 39(3), pages 1223-1252, September.
    19. Fassas, Athanasios P. & Papadamou, Stephanos & Koulis, Alexandros, 2020. "Price discovery in bitcoin futures," Research in International Business and Finance, Elsevier, vol. 52(C).
    20. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    21. Beneki, Christina & Koulis, Alexandros & Kyriazis, Nikolaos A. & Papadamou, Stephanos, 2019. "Investigating volatility transmission and hedging properties between Bitcoin and Ethereum," Research in International Business and Finance, Elsevier, vol. 48(C), pages 219-227.
    22. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    23. Gustavo Grullon, 2004. "Advertising, Breadth of Ownership, and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 439-461.
    24. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    25. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
    26. Zhang, Yue-Jun & Lin, Jia-Juan, 2019. "Can the VAR model outperform MRS model for asset allocation in commodity market under different risk preferences of investors?," International Review of Financial Analysis, Elsevier, vol. 66(C).
    27. repec:pra:mprapa:58133 is not listed on IDEAS
    28. Wu, You & Han, Liyan & Yin, Libo, 2019. "Our currency, your attention: Contagion spillovers of investor attention on currency returns," Economic Modelling, Elsevier, vol. 80(C), pages 49-61.
    29. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    30. Kou, Yi & Ye, Qiang & Zhao, Feng & Wang, Xiaolin, 2018. "Effects of investor attention on commodity futures markets," Finance Research Letters, Elsevier, vol. 25(C), pages 190-195.
    31. Adrian (Wai-Kong) Cheung & Eduardo Roca & Jen-Je Su, 2015. "Crypto-currency bubbles: an application of the Phillips-Shi-Yu (2013) methodology on Mt. Gox bitcoin prices," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2348-2358, May.
    32. Bouoiyour, Jamal & Selmi, Refk, 2014. "What Does Crypto-currency Look Like? Gaining Insight into Bitcoin Phenomenon," MPRA Paper 57907, University Library of Munich, Germany.
    33. Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
    34. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    35. Yin, Libo & Feng, Jiabao, 2019. "Can investors attention on oil markets predict stock returns?," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 786-800.
    36. Wang, Pengfei & Zhang, Wei & Li, Xiao & Shen, Dehua, 2019. "Is cryptocurrency a hedge or a safe haven for international indices? A comprehensive and dynamic perspective," Finance Research Letters, Elsevier, vol. 31(C), pages 1-18.
    37. Shahzad, Syed Jawad Hussain & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav & Lucey, Brian, 2019. "Is Bitcoin a better safe-haven investment than gold and commodities?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 322-330.
    38. Pham, Linh & Luu Duc Huynh, Toan, 2020. "How does investor attention influence the green bond market?," Finance Research Letters, Elsevier, vol. 35(C).
    39. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    40. Ibikunle, Gbenga & McGroarty, Frank & Rzayev, Khaladdin, 2020. "More heat than light: Investor attention and bitcoin price discovery," International Review of Financial Analysis, Elsevier, vol. 69(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Danyan & Zhang, Zihao & Nie, Jing & Cao, Yang, 2024. "Investor attention and anomalies: Evidence from the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    2. Cohen, Gil & Aiche, Avishay, 2025. "Intelligent forecasting in bitcoin markets," Finance Research Letters, Elsevier, vol. 71(C).
    3. Ben Jabeur, Sami & Gozgor, Giray & Rezgui, Hichem & Mohammed, Kamel Si, 2024. "Dynamic dependence between quantum computing stocks and Bitcoin: Portfolio strategies for a new era of asset classes," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    4. He, Xie & Hamori, Shigeyuki, 2024. "The higher the better? Hedging and investment strategies in cryptocurrency markets: Insights from higher moment spillovers," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    5. Zhang, Xiangyu & Chen, Zhuming & Wang, Shengyu, 2024. "A study of the impact of cryptocurrency price volatility on the stock and gold markets," Finance Research Letters, Elsevier, vol. 69(PA).
    6. Saeedi, Ali & Al-Fattal, Anas, 2025. "Examining trust in cryptocurrency investment: Insights from the structural equation modeling," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    7. Shang, Dawei & Guo, Ziyu & Wang, Hui, 2024. "Enhancing digital cryptocurrency trading price prediction with an attention-based convolutional and recurrent neural network approach: The case of Ethereum," Finance Research Letters, Elsevier, vol. 67(PB).
    8. Baeckström, Ylva & Jalan, Akanksha & Matkovskyy, Roman, 2024. "The role of promotion versus prevention-orientation to predict individual cryptocurrency participation," Finance Research Letters, Elsevier, vol. 67(PA).
    9. Zhao, Yingxiu & Goodell, John W. & Shen, Dehua, 2024. "Spillover effects according to classification of cryptocurrency," Finance Research Letters, Elsevier, vol. 65(C).
    10. Chen, Yu-Lun & Xu, Ke & Yang, J. Jimmy, 2025. "Market impact of the bitcoin ETF introduction on bitcoin futures," International Review of Financial Analysis, Elsevier, vol. 97(C).
    11. Yousaf, Imran & Abrar, Afsheen & Ali, Shoaib & Goodell, John W., 2024. "Connectedness between energy cryptocurrencies and US equity markets: A quantile-based analysis," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    12. Ardia, David & Bluteau, Keven, 2024. "Twitter and cryptocurrency pump-and-dumps," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    13. Gunay, Samet & Sraieb, Mohamed M. & Muhammed, Shahnawaz, 2024. "Decrypting Metaverse crypto Market: A nonlinear analysis of investor sentiment," International Review of Financial Analysis, Elsevier, vol. 96(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Qingjie Zhou & Panpan Zhu & Yinpeng Zhang, 2023. "Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention," Energies, MDPI, vol. 16(2), pages 1-22, January.
    3. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    4. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    5. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    6. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    7. Lee, Seungho & Meslmani, Nabil El & Switzer, Lorne N., 2020. "Pricing Efficiency and Arbitrage in the Bitcoin Spot and Futures Markets," Research in International Business and Finance, Elsevier, vol. 53(C).
    8. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    9. Wang, Chen & Shen, Dehua & Li, Youwei, 2022. "Aggregate Investor Attention and Bitcoin Return: The Long Short-term Memory Networks Perspective," Finance Research Letters, Elsevier, vol. 49(C).
    10. Shouyu Yao & Ahmet Sensoy & Duc Khuong Nguyen & Tong Li, 2024. "Investor attention and cryptocurrency market liquidity: a double-edged sword," Annals of Operations Research, Springer, vol. 334(1), pages 815-856, March.
    11. Tzeng, Kae-Yih & Su, Yi-Kai, 2024. "Can U.S. macroeconomic indicators forecast cryptocurrency volatility?," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    12. Qingjie Zhou & Panpan Zhu & You Wu & Yinpeng Zhang, 2022. "Research on the Volatility of the Cotton Market under Different Term Structures: Perspective from Investor Attention," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    13. Jareño, Francisco & González, María de la O & Tolentino, Marta & Sierra, Karen, 2020. "Bitcoin and gold price returns: A quantile regression and NARDL analysis," Resources Policy, Elsevier, vol. 67(C).
    14. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    15. Ozdamar, Melisa & Sensoy, Ahmet & Akdeniz, Levent, 2022. "Retail vs institutional investor attention in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    16. Mokni, Khaled & Bouteska, Ahmed & Nakhli, Mohamed Sahbi, 2022. "Investor sentiment and Bitcoin relationship: A quantile-based analysis," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    17. Wei Zhang & Pengfei Wang, 2020. "Investor attention and the pricing of cryptocurrency market," Evolutionary and Institutional Economics Review, Springer, vol. 17(2), pages 445-468, July.
    18. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    19. Ahmed, Walid M.A. & Al Mafrachi, Mustafa, 2021. "Do higher-order realized moments matter for cryptocurrency returns?," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 483-499.
    20. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Hedging the extreme risk of cryptocurrency," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.