IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0077718.html
   My bibliography  Save this article

Network Structure and Travel Time Perception

Author

Listed:
  • Pavithra Parthasarathi
  • David Levinson
  • Hartwig Hochmair

Abstract

The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

Suggested Citation

  • Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
  • Handle: RePEc:plo:pone00:0077718
    DOI: 10.1371/journal.pone.0077718
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077718
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0077718&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0077718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Parthasarathi, Pavithra & Levinson, David, 2010. "Post-construction evaluation of traffic forecast accuracy," Transport Policy, Elsevier, vol. 17(6), pages 428-443, November.
    2. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2012. "Network Structure and Spatial Separation," Environment and Planning B, , vol. 39(1), pages 137-154, February.
    3. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    4. Mark Casson, 2009. "The Efficiency of the Victorian British Railway Network: A Counterfactual Analysis," Networks and Spatial Economics, Springer, vol. 9(3), pages 339-378, September.
    5. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    6. Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
    7. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    8. Levinson, David & El-Geneidy, Ahmed, 2009. "The minimum circuity frontier and the journey to work," Regional Science and Urban Economics, Elsevier, vol. 39(6), pages 732-738, November.
    9. Arnold van Exel, Nicolaas Jacob & Rietveld, Piet, 2010. "Perceptions of public transport travel time and their effect on choice-sets among car drivers," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 75-86.
    10. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    11. David Levinson & Kathleen Harder & John Bloomfield & Kasia Winiarczyk, 2004. "Weighting Waiting: Evaluating the Perception of In-Vehicle Travel Time Under Moving and Stopped Conditions," Working Papers 200401, University of Minnesota: Nexus Research Group.
    12. Ballou, Ronald H. & Rahardja, Handoko & Sakai, Noriaki, 2002. "Selected country circuity factors for road travel distance estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 843-848, November.
    13. Feng Xie & David M. Levinson, 2011. "Evolving Transportation Networks," Transportation Research, Economics and Policy, Springer, number 978-1-4419-9804-0, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Janson & David Levinson, 2013. "HOT or Not: Driver Elasticity to Price on the MnPASS HOT Lanes," Working Papers 000111, University of Minnesota: Nexus Research Group.
    2. Carlos Carrion & David Levinson, 2019. "Overestimation and underestimation of travel time on commute trips: GPS vs. self- reporting," Working Papers 2019-05, University of Minnesota: Nexus Research Group.
    3. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2015. "Street network structure and household activity spaces," Urban Studies, Urban Studies Journal Limited, vol. 52(6), pages 1090-1112, May.
    2. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    3. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    4. Parthasarathi, Pavithra & Levinson, David, 2018. "Network structure and the journey to work: An intra-metropolitan analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 292-304.
    5. David Levinson & David Giacomin & Antony Badsey-Ellis, 2014. "Accessibility and the choice of network investments in the London Underground," Working Papers 000124, University of Minnesota: Nexus Research Group.
    6. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    7. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.
    8. Huang, Jie & Levinson, David M., 2015. "Circuity in urban transit networks," Journal of Transport Geography, Elsevier, vol. 48(C), pages 145-153.
    9. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    10. Boeing, Geoff, 2017. "The Relative Circuity of Walkable and Drivable Urban Street Networks," SocArXiv 4rzqa, Center for Open Science.
    11. David J Giacomin & David M Levinson, 2015. "Road network circuity in metropolitan areas," Environment and Planning B, , vol. 42(6), pages 1040-1053, November.
    12. Fangxia Zhao & Jianjun Wu & Huijun Sun & Ziyou Gao & Ronghui Liu, 2016. "Population-driven Urban Road Evolution Dynamic Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 997-1018, December.
    13. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2012. "Network Structure and Spatial Separation," Environment and Planning B, , vol. 39(1), pages 137-154, February.
    14. Lei Kang & Chao Yang & Jeffrey C Peters & Peng Zeng, 2016. "Empirical analysis of road networks evolution patterns in a government-oriented development area," Environment and Planning B, , vol. 43(4), pages 698-715, July.
    15. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    16. David Giacomin & Luke James & David Levinson, 2012. "Trends in Metropolitan Network Circuity," Working Papers 000106, University of Minnesota: Nexus Research Group.
    17. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    18. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
    19. Parthasarathi, Pavithra, 2014. "Network structure and metropolitan mobility," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 153-168.
    20. Jeeno Soa George & Saikat Kumar Paul & Richa Dhawale, 2022. "Multilayer network structure and city size: A cross-sectional analysis of global cities to detect the correlation between street and terrain," Environment and Planning B, , vol. 49(5), pages 1448-1463, June.

    More about this item

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0077718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.