IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v14y2014i3p297-316.html
   My bibliography  Save this article

Spatial Science and Network Science: Review and Outcomes of a Complex Relationship

Author

Listed:
  • César Ducruet
  • Laurent Beauguitte

Abstract

For decades, the spatial approach to network analysis has principally focused on planar and technical networks from a classic graph theory perspective. Reference to models and methods developed by other disciplines on non-planar networks, such as sociology and physics, is recent, limited, and dispersed. Conversely, the physics literature that developed the popular scale-free and small-world models pays an increasing attention to the spatial dimension of networks. Reviewing how complex network research has been integrated into geography and regional science reveals a high heterogeneity among spatial scientists as well as key directions for increasing their role inside multidisciplinary researches on networks. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
  • Handle: RePEc:kap:netspa:v:14:y:2014:i:3:p:297-316
    DOI: 10.1007/s11067-013-9222-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-013-9222-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-013-9222-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandra Vinciguerra & Koen Frenken & Marco Valente, 2010. "The Geography of Internet Infrastructure: An Evolutionary Simulation Approach Based on Preferential Attachment," Urban Studies, Urban Studies Journal Limited, vol. 47(9), pages 1969-1984, August.
    2. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    3. Barber, Michael J. & Fischer, Manfred M. & Scherngell, Thomas, 2011. "The Community Structure of R&D Cooperation in Europe. Evidence from a social network perspective," MPRA Paper 77553, University Library of Munich, Germany.
    4. Sean P. Gorman & Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Rajendra Kulkarni & Günter Haag, 2007. "An Application of Complex Network Theory to German Commuting Patterns," International Series in Operations Research & Management Science, in: Terry L. Friesz (ed.), Network Science, Nonlinear Science and Infrastructure Systems, chapter 0, pages 167-185, Springer.
    5. Gabaix, Xavier & Ioannides, Yannis M., 2004. "The evolution of city size distributions," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 53, pages 2341-2378, Elsevier.
    6. Dan Bogart, 2009. "Inter-Modal Network Externalities and Transport Development: Evidence from Roads, Canals, and Ports During the English Industrial Revolution," Networks and Spatial Economics, Springer, vol. 9(3), pages 309-338, September.
    7. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    8. Géraldine Pflieger & Céline Rozenblat, 2010. "Introduction. Urban Networks and Network Theory: The City as the Connector of Multiple Networks," Urban Studies, Urban Studies Journal Limited, vol. 47(13), pages 2723-2735, November.
    9. Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
    10. V. Rosato & L. Issacharoff & F. Tiriticco & S. Meloni & S. De Porcellinis & R. Setola, 2008. "Modelling interdependent infrastructures using interacting dynamical models," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 63-79.
    11. John D. Nystuen & Michael F. Dacey, 1961. "A Graph Theory Interpretation Of Nodal Regions," Papers in Regional Science, Wiley Blackwell, vol. 7(1), pages 29-42, January.
    12. Isabelle Thomas, 2002. "Transportation Networks and the Optimal Location of Human Activities," Books, Edward Elgar Publishing, number 2436.
    13. Devriendt, Lomme & Derudder, Ben & Witlox, Frank, 2010. "Conceptualizing digital and physical connectivity: The position of European cities in Internet backbone and air traffic flows," Telecommunications Policy, Elsevier, vol. 34(8), pages 417-429, September.
    14. Roberto Patuelli & Aura Reggiani & Sean Gorman & Peter Nijkamp & Franz-Josef Bade, 2007. "Network Analysis of Commuting Flows: A Comparative Static Approach to German Data," Networks and Spatial Economics, Springer, vol. 7(4), pages 315-331, December.
    15. Anne Bretagnolle & Denise Pumain, 2010. "Simulating Urban Networks through Multiscalar Space-Time Dynamics: Europe and the United States, 17th-20th Centuries," Urban Studies, Urban Studies Journal Limited, vol. 47(13), pages 2819-2839, November.
    16. Liu, Xingjian & Derudder, Ben & García, Cándida Gago, 2013. "Exploring the co-evolution of the geographies of air transport aviation and corporate networks," Journal of Transport Geography, Elsevier, vol. 30(C), pages 26-36.
    17. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    18. Aura Reggiani & Peter Nijkamp (ed.), 2006. "Spatial Dynamics, Networks and Modelling," Books, Edward Elgar Publishing, number 3887.
    19. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    20. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations : A complex network approach to shipping and ports," Post-Print hal-03246963, HAL.
    21. Lee Fleming & Charles King & Adam I. Juda, 2007. "Small Worlds and Regional Innovation," Organization Science, INFORMS, vol. 18(6), pages 938-954, December.
    22. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    23. Andersson, Claes & Hellervik, Alexander & Lindgren, Kristian, 2005. "A spatial network explanation for a hierarchy of urban power laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 227-244.
    24. Johannes Illenberger & Kai Nagel & Gunnar Flötteröd, 2013. "The Role of Spatial Interaction in Social Networks," Networks and Spatial Economics, Springer, vol. 13(3), pages 255-282, September.
    25. Céline Rozenblat, 2010. "Opening the Black Box of Agglomeration Economies for Measuring Cities’ Competitiveness through International Firm Networks," Urban Studies, Urban Studies Journal Limited, vol. 47(13), pages 2841-2865, November.
    26. Ducruet, César & Rozenblat, Céline & Zaidi, Faraz, 2010. "Ports in multi-level maritime networks: evidence from the Atlantic (1996–2006)," Journal of Transport Geography, Elsevier, vol. 18(4), pages 508-518.
    27. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    28. De Montis, Andrea & Chessa, Alessandro & Campagna, Michele & Caschili, Simone & Deplano, Giancarlo, 2010. "Modeling commuting systems through a complex network analysis: A study of the Italian islands of Sardinia and Sicily," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 39-55.
    29. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    30. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    31. Wong, Ling Heng & Pattison, Philippa & Robins, Garry, 2006. "A spatial model for social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 99-120.
    32. Anne Ter Wal & Ron Boschma, 2009. "Applying social network analysis in economic geography: framing some key analytic issues," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(3), pages 739-756, September.
    33. Laurie Schintler & Rajendra Kulkarni & Sean Gorman & Roger Stough, 2007. "Using Raster-Based GIS and Graph Theory to Analyze Complex Networks," Networks and Spatial Economics, Springer, vol. 7(4), pages 301-313, December.
    34. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations: a complex network approach to shipping and ports," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(2), pages 151-168, March.
    35. César Ducruet & Faraz Zaidi, 2012. "Maritime constellations: A complex network approach to shipping and ports," Post-Print halshs-00551207, HAL.
    36. Claes Andersson & Koen Frenken & Alexander Hellervik, 2006. "A Complex Network Approach to Urban Growth," Environment and Planning A, , vol. 38(10), pages 1941-1964, October.
    37. Wang, Jiaoe & Jin, Fengjun & Mo, Huihui & Wang, Fahui, 2009. "Spatiotemporal evolution of China's railway network in the 20th century: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 765-778, October.
    38. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    39. William L. Garrison, 1960. "Connectivity Of The Interstate Highway System," Papers in Regional Science, Wiley Blackwell, vol. 6(1), pages 121-137, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios Tsiotas & Serafeim Polyzos, 2018. "The Complexity in the Study of Spatial Networks: an Epistemological Approach," Networks and Spatial Economics, Springer, vol. 18(1), pages 1-32, March.
    2. Ducruet, César, 2013. "Network diversity and maritime flows," Journal of Transport Geography, Elsevier, vol. 30(C), pages 77-88.
    3. César Ducruet, 2013. "Network diversity and maritime flows," Post-Print halshs-00815731, HAL.
    4. Ducruet, César, 2017. "Multilayer dynamics of complex spatial networks: The case of global maritime flows (1977–2008)," Journal of Transport Geography, Elsevier, vol. 60(C), pages 47-58.
    5. Calatayud, Agustina & Mangan, John & Palacin, Roberto, 2017. "Connectivity to international markets: A multi-layered network approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 61-71.
    6. Xu, Mengqiao & Li, Zhenfu & Shi, Yanlei & Zhang, Xiaoling & Jiang, Shufei, 2015. "Evolution of regional inequality in the global shipping network," Journal of Transport Geography, Elsevier, vol. 44(C), pages 1-12.
    7. Dai, Liang & Derudder, Ben & Liu, Xingjian, 2018. "The evolving structure of the Southeast Asian air transport network through the lens of complex networks, 1979–2012," Journal of Transport Geography, Elsevier, vol. 68(C), pages 67-77.
    8. Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.
    9. César Ducruet & Hidekazu Itoh & Justin Berli, 2020. "Urban gravity in the global container shipping network," Post-Print halshs-02588449, HAL.
    10. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    11. Ducruet, César & Itoh, Hidekazu & Berli, Justin, 2020. "Urban gravity in the global container shipping network," Journal of Transport Geography, Elsevier, vol. 85(C).
    12. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    13. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    14. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    15. Ge, Jiawei & fu, Qiang & Zhang, Qiang & Wan, Zheng, 2022. "Regional operating patterns of world container shipping network: A perspective from motif identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    16. Tovar, Beatriz & Hernández, Rubén & Rodríguez-Déniz, Héctor, 2015. "Container port competitiveness and connectivity: The Canary Islands main ports case," Transport Policy, Elsevier, vol. 38(C), pages 40-51.
    17. Nguyen Tran & Hans-Dietrich Haasis, 2014. "Empirical analysis of the container liner shipping network on the East-West corridor (1995–2011)," Netnomics, Springer, vol. 15(3), pages 121-153, November.
    18. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    19. Jung, Paul H. & Thill, Jean-Claude, 2022. "Sea-land interdependence and delimitation of port hinterland-foreland structures in the international transportation system," Journal of Transport Geography, Elsevier, vol. 99(C).
    20. Dimitrios Tsiotas & Serafeim Polyzos, 2015. "Analyzing the Maritime Transportation System in Greece: a Complex Network Approach," Networks and Spatial Economics, Springer, vol. 15(4), pages 981-1010, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:14:y:2014:i:3:p:297-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.