IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v19y2019i4d10.1007_s11067-019-09466-5.html
   My bibliography  Save this article

Application of Complex Networks Theory in Urban Traffic Network Researches

Author

Listed:
  • Rui Ding

    (Guizhou University of Finance and Economics)

  • Norsidah Ujang

    (Universiti Putra Malaysia)

  • Hussain Bin Hamid

    (Universiti Putra Malaysia)

  • Mohd Shahrudin Abd Manan

    (Universiti Putra Malaysia)

  • Rong Li

    (Beijing Jiaotong University)

  • Safwan Subhi Mousa Albadareen

    (Universiti Putra Malaysia)

  • Ashkan Nochian

    (Universiti Putra Malaysia)

  • Jianjun Wu

    () (Beijing Jiaotong University)

Abstract

Complex network theory is a multidisciplinary research direction of complexity science which has experienced a rapid surge of interest over the last two decades. Its applications in land-based urban traffic network studies have been fruitful, but have suffered from the lack of a systematic cognitive and integration framework. This paper reviews complex network theory related knowledge and discusses its applications in urban traffic network studies in several directions. This includes network representation methods, topological and geographical related studies, network communities mining, network robustness and vulnerability, big-data-based research, network optimization, co-evolution research and multilayer network theory related studies. Finally, new research directions are pointed out. With these efforts, this physics-based concept will be more easily and widely accepted by urban traffic network planners, designers, and other related scholars.

Suggested Citation

  • Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
  • Handle: RePEc:kap:netspa:v:19:y:2019:i:4:d:10.1007_s11067-019-09466-5
    DOI: 10.1007/s11067-019-09466-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-019-09466-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Levinson & Bhanu Yerra, 2006. "Self-Organization of Surface Transportation Networks," Transportation Science, INFORMS, vol. 40(2), pages 179-188, May.
    2. Zhong-Yuan Jiang & Man-Gui Liang & Shuai Zhang & Weixing Zhou & Huiqin Jin, 2013. "Enhancing Traffic Capacity Of Two-Layer Complex Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-10.
    3. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    4. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    5. Peter Widhalm & Yingxiang Yang & Michael Ulm & Shounak Athavale & Marta González, 2015. "Discovering urban activity patterns in cell phone data," Transportation, Springer, vol. 42(4), pages 597-623, July.
    6. Bhanu Yerra & David Levinson, 2005. "The emergence of hierarchy in transportation networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 39(3), pages 541-553, September.
    7. William L. Garrison & Duane F. Marble, 1964. "Factor‐Analytic Study Of The Connkctivity Of A Transportation Network," Papers in Regional Science, Wiley Blackwell, vol. 12(1), pages 231-238, January.
    8. M.-B. Hu & R. Jiang & Y.-H. Wu & W.-X. Wang & Q.-S. Wu, 2008. "Urban traffic from the perspective of dual graph," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(1), pages 127-133, May.
    9. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    10. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    11. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    12. Rui Ding & Norsidah Ujang & Hussain bin Hamid & Jianjun Wu, 2015. "Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    13. A. P. Masucci & D. Smith & A. Crooks & M. Batty, 2009. "Random planar graphs and the London street network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 259-271, September.
    14. Wang, Fahui & Antipova, Anzhelika & Porta, Sergio, 2011. "Street centrality and land use intensity in Baton Rouge, Louisiana," Journal of Transport Geography, Elsevier, vol. 19(2), pages 285-293.
    15. Zhong-Yuan Jiang, 2014. "An incremental optimal routing strategy for scale-free networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(09), pages 1-11.
    16. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    17. Yu Liu & Zhengwei Sui & Chaogui Kang & Yong Gao, 2014. "Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    18. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    19. David Levinson, 2008. "Density and dispersion: the co-development of land use and rail in London," Journal of Economic Geography, Oxford University Press, vol. 8(1), pages 55-77, January.
    20. Claes Andersson & Koen Frenken & Alexander Hellervik, 2006. "A Complex Network Approach to Urban Growth," Environment and Planning A, , vol. 38(10), pages 1941-1964, October.
    21. M. T. Gastner & M. E.J. Newman, 2006. "The spatial structure of networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(2), pages 247-252, January.
    22. Sybil Derrible, 2012. "Network Centrality of Metro Systems," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    23. Sybil Derrible & Christopher Kennedy, 2011. "Applications of Graph Theory and Network Science to Transit Network Design," Transport Reviews, Taylor & Francis Journals, vol. 31(4), pages 495-519.
    24. Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.
    25. Shuai Zhang & Man-Gui Liang & Zhong-Yuan Jiang & Hui-Jia Li, 2015. "Improved efficient static weighted routing strategy on two-layer complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 1-13.
    26. Fangxia Zhao & Jianjun Wu & Huijun Sun & Ziyou Gao & Ronghui Liu, 2016. "Population-driven Urban Road Evolution Dynamic Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 997-1018, December.
    27. William L. Garrison, 1960. "Connectivity Of The Interstate Highway System," Papers in Regional Science, Wiley Blackwell, vol. 6(1), pages 121-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    2. Sheng Wei & Lei Wang, 2020. "Examining the population flow network in China and its implications for epidemic control based on Baidu migration data," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-10, December.
    3. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:19:y:2019:i:4:d:10.1007_s11067-019-09466-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.