IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v665y2025ics0378437125001712.html
   My bibliography  Save this article

Car following dynamics in mixed traffic flow of autonomous and human-driven vehicles: Complex networks approach

Author

Listed:
  • Hu, Junjie
  • Lee, Jaeyoung Jay

Abstract

Autonomous driving technologies have demonstrated exceptional performance in improving traffic operational efficiency and safety, contributing to the growing market penetration rate of autonomous vehicles (AVs). This study focuses on analyzing the interaction between AVs and human-driven vehicles (HVs) in mixed traffic flow, with an emphasis on the behavioral differences among various car-following (CF) vehicle pair types. While previous research has primarily relied on simulation and statistical methods to quantify the interaction between AVs and HVs, these approaches might overlook real-world driving nuances and fail to capture the dynamic changes in driving behavior. To address the limitations, we utilize a mixed traffic flow dataset (i.e., Lyft Level-5 Open Dataset), and apply a coarse-grained phase-space algorithm to model the dynamic changes in CF behavior. The interactions of different vehicle pairs are represented as directed, weighted complex networks. By analyzing network metrics, extracting core subgraphs, and calculating network similarities, the result indicates that the type of car following vehicle pair significantly influences following behavior. Moreover, changes in the leading or following vehicles within a platoon can lead to shifts in following behavior, and the introduction of AVs contributes positively to enhancing both the safety and efficiency of traffic flow. These network-based findings enrich the understanding of interactions between different vehicle types in mixed traffic flow and provide a solid foundation for designing mixed traffic flow control algorithms that account for vehicle type heterogeneity.

Suggested Citation

  • Hu, Junjie & Lee, Jaeyoung Jay, 2025. "Car following dynamics in mixed traffic flow of autonomous and human-driven vehicles: Complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
  • Handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001712
    DOI: 10.1016/j.physa.2025.130519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001712
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    2. Zeng, Jie & Xiong, Yong & Liu, Feiyang & Ye, Junqing & Tang, Jinjun, 2022. "Uncovering the spatiotemporal patterns of traffic congestion from large-scale trajectory data: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    5. Zhai, Cong & Wu, Weitiao & Zhang, Jiyong & Xiao, Yingping & Zhai, Min, 2024. "An anisotropic macroscopic mixed-flow model integrating the perceptual domains differences impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    6. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    7. Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
    8. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    10. Hu, Junjie & Hu, Cheng & Yang, Jiayu & Bai, Jun & Lee, Jaeyoung Jay, 2024. "Do traffic flow states follow Markov properties? A high-order spatiotemporal traffic state reconstruction approach for traffic prediction and imputation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    11. An, Xin-lei & Zhang, Li & Li, Yin-zhen & Zhang, Jian-gang, 2014. "Synchronization analysis of complex networks with multi-weights and its application in public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 149-156.
    12. repec:plo:pone00:0080178 is not listed on IDEAS
    13. Wang, Minggang & Tian, Lixin, 2016. "From time series to complex networks: The phase space coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 456-468.
    14. Li, Zhaohui & Li, Xinyu & Li, Mindi & Zhang, Kexin & Zhang, Xi & Zhou, Xiaoxia, 2024. "Evaluation of human epileptic brain networks by constructing simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    15. Nima Dehmamy & Soodabeh Milanlouei & Albert-László Barabási, 2018. "A structural transition in physical networks," Nature, Nature, vol. 563(7733), pages 676-680, November.
    16. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    17. Sueyoshi, Fumi & Utsumi, Shinobu & Tanimoto, Jun, 2022. "Underlying social dilemmas in mixed traffic flow with lane changes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    20. Li, Xia & You, Zhijian & Ma, Xinwei & Pang, Xiaomin & Min, Xuefeng & Cui, Hongjun, 2024. "Effect of autonomous vehicles on car-following behavior of human drivers: Analysis based on structural equation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Darshana & Siwach, Vikash & Redhu, Poonam, 2025. "The interplay of passing, driver attention, and cyber attack-induced information delays on traffic stability," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    2. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Tian, Chuan & Kang, Yirong, 2025. "Modeling and optimal congestion control of multi-lane highway traffic with on-ramp and off-ramp under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
    4. Zhang, Geng & Guo, Hai-Yan & Ren, Yue & Gan, Hao-Ting, 2025. "Stability and phase transition of a novel lattice hydrodynamic model considering different flux information coordination methods," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    5. Yuan, Shijiao & Chen, Qiang, 2025. "Harmony in heterogeneous traffic flow: A lattice hydrodynamic model with perception diversity and predictive effect coordinated by bilaterally controlled CAVs," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    6. Wang, Jin-Fa & He, Xuan & Si, Shuai-Zong & Zhao, Hai & Zheng, Chunyang & Yu, Hao, 2019. "Using complex network theory for temporal locality in network traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 722-736.
    7. Peng, Guanghan & Wang, Keke & Tan, Huili & Huang, Darong, 2025. "Jamming transition of connected vehicles platform integrating speed change memory information to counteract cyber-attacks on slope lane," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    8. Sheikh, Muhammad Sameer & Regan, Amelia, 2022. "A complex network analysis approach for estimation and detection of traffic incidents based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    9. Jin, Can & Peng, Guanghan & Huang, Yixin, 2025. "Phase transitions in operation of heterogeneous vehicles mixed with human-driven and connected autonomous vehicles under speed restriction circumstances," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    10. Wang, Zihao & Ge, Hongxia & Dai, Pingping & Liu, Huaqing, 2025. "Modeling non-equilibrium mixed traffic flow in composite road environments with “End-Edge-Cloud” structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    11. Peng, Guanghan & Wu, Kunning & Tan, Huili, 2024. "Bifurcation and phase transitions in heterogeneous non-lane-discipline-based car-following model integrating cooperative feedback control under automated and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    12. Zhang, Zhizhen & Lu, Changhong, 2025. "Traffic flow phase transition phenomena based on the kinetic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 662(C).
    13. Siwach, Vikash & Yadav, Darshana & Redhu, Poonam, 2025. "Enhancing driver’s attention and overtaking efficiency in car-following model for Advanced Driver Assistance Systems (ADAS) vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    14. Zhai, Cong & Wu, Weitiao & Zhang, Jiyong & Xiao, Yingping & Zhai, Min, 2024. "An anisotropic macroscopic mixed-flow model integrating the perceptual domains differences impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    15. Min Su & Baoyang Hu & Yipeng Jiang & Zhenchao Zhang & Zeyang Li, 2022. "Relationship between the Chinese Main Air Transport Network and COVID-19 Pandemic Transmission," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    16. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    17. Biswas, Debabrata & Mandal, Tapas & Banerjee, Tanmoy, 2024. "Transition among oscillation death, amplitude death, and revival of oscillation in coupled time-delayed systems with diffusivity and common environment," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    18. An, Xudong & Wu, Xingjian & Liu, Weiqi & Cheng, Rongjun, 2024. "Real-time rear-end conflict prediction on congested highways sections using trajectory data," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    19. Jin, Can & Qing, Li & Zhu, Meilan & Peng, Guanghan, 2025. "Phase transitions and spectral entropy of heterogeneous vehicles comprised of CAVs and HDVs in flux restriction scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    20. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.