IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924005174.html
   My bibliography  Save this article

Do traffic flow states follow Markov properties? A high-order spatiotemporal traffic state reconstruction approach for traffic prediction and imputation

Author

Listed:
  • Hu, Junjie
  • Hu, Cheng
  • Yang, Jiayu
  • Bai, Jun
  • Lee, Jaeyoung Jay

Abstract

Assessing traffic states accurately is challenging due to the complex, high-dimensional, and nonlinear nature of traffic systems. This study introduces the innovative High-Order Spatiotemporal Traffic State Reconstruction (HOSTSR) algorithm, designed to track and predict traffic flow dynamics effectively. It combines phase space reconstruction with time delays and high-order neighborhood concepts from graph theory to improve traffic state assessments' accuracy. The algorithm's effectiveness is validated using chi-square tests and the Chapman-Kolmogorov equation to confirm the Markovian properties of traffic flows. A lean autoencoder, informed by prior Markov knowledge of traffic states, is developed for mapping traffic states to real traffic data, proving highly effective for traffic data imputation due to the Markov model's memoryless property. Experimental results from the PeMSD04 and PeMSD08 datasets show that HOSTSR outperforms traditional state reconstruction methods based on delayed coordinate embedding in predicting future traffic flow state based on four key metrics. The autoencoder framework, guided by prior Markov knowledge, shows significant advantages in addressing traffic data gaps in different cases over six baseline models. Gradient sensitivity analysis further evaluates the impact of prior knowledge on improving the autoencoder's interpretability for interpolation efforts.

Suggested Citation

  • Hu, Junjie & Hu, Cheng & Yang, Jiayu & Bai, Jun & Lee, Jaeyoung Jay, 2024. "Do traffic flow states follow Markov properties? A high-order spatiotemporal traffic state reconstruction approach for traffic prediction and imputation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005174
    DOI: 10.1016/j.chaos.2024.114965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.