IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v36y2008i3p550-558.html
   My bibliography  Save this article

Nonlinear analysis of an extended traffic flow model in ITS environment

Author

Listed:
  • Yu, Lei
  • Shi, Zhongke

Abstract

An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell–Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink–antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one.

Suggested Citation

  • Yu, Lei & Shi, Zhongke, 2008. "Nonlinear analysis of an extended traffic flow model in ITS environment," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 550-558.
  • Handle: RePEc:eee:chsofr:v:36:y:2008:i:3:p:550-558
    DOI: 10.1016/j.chaos.2007.07.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907005917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.07.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Hu, Junjie & Hu, Cheng & Yang, Jiayu & Bai, Jun & Lee, Jaeyoung Jay, 2024. "Do traffic flow states follow Markov properties? A high-order spatiotemporal traffic state reconstruction approach for traffic prediction and imputation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Ai, Wen-Huan & Shi, Zhong-Ke & Liu, Da-Wei, 2015. "Bifurcation analysis of a speed gradient continuum traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 418-429.
    4. Zhang, Jing & Xu, Keyu & Li, Guangyao & Li, Shubin & Wang, Tao, 2021. "Dynamics of traffic flow affected by the future motion of multiple preceding vehicles under vehicle-connected environment: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. S. I. Oni & Charles Asenime, 2008. "A Daily Flow Profile of Traffic in an Urban Traffic Corridor: The Nigerian Experience," Indus Journal of Management & Social Science (IJMSS), Department of Business Administration, vol. 2(2), pages 99-109, December.
    6. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Peng, Guanghan & Li, Xinhai & Wang, Hailing & Tan, Huili, 2024. "Bifurcation and phase transitions in car-following model integrating driver's characteristic and speed limit on spiral slope roads," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:36:y:2008:i:3:p:550-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.