IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925003790.html
   My bibliography  Save this article

The interplay of passing, driver attention, and cyber attack-induced information delays on traffic stability

Author

Listed:
  • Yadav, Darshana
  • Siwach, Vikash
  • Redhu, Poonam

Abstract

With the growing integration of Advanced Driver Assistance Systems (ADAS) in modern vehicles, cybersecurity threats present substantial risks to traffic stability and safety. This study introduces an advanced car-following model that accounts for the effects of passing, driver attention, and information delays caused by cyberattacks, and investigates their impact on traffic dynamics within ADAS systems. To understand how perturbations evolve over time, stability analysis is performed. Linear stability analysis identifies the conditions for neutral stability, while nonlinear analysis, using the reductive perturbation method, reveals stable, metastable, and unstable traffic states. The results show that a lower passing rate slightly reduces congestion while maintaining the same flow pattern, whereas a higher passing rate leads to a transition from congested to chaotic flow. Our findings also suggest that cyber intrusions exacerbate instability, while information from leading vehicles helps to enhance stability. Random, variable cyberattack intensity on vehicles is found to be more detrimental to stability than a constant, uniform impact, making traffic flow more unpredictable. Furthermore, spectral entropy is used to quantify traffic disruptions caused by cyberattacks, emphasizing the importance of driver attention and information exchange in mitigating instability. This study provides valuable insights into the interaction between cybersecurity and traffic stability, contributing to the development of more resilient ADAS-based transportation systems.

Suggested Citation

  • Yadav, Darshana & Siwach, Vikash & Redhu, Poonam, 2025. "The interplay of passing, driver attention, and cyber attack-induced information delays on traffic stability," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003790
    DOI: 10.1016/j.chaos.2025.116366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Hongzhuan & Xia, Dongxue & Yang, Shuhong & Peng, Guanghan, 2020. "The delayed-time effect of traffic flux on traffic stability for two-lane freeway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    3. Zhao, Hongzhuan & Chen, Qiguang & Shi, Wei & Gu, Tianlong & Li, Wenyong, 2019. "Stability analysis of an improved car-following model accounting for the driver’s characteristics and automation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    4. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Zhang, Yicai & Xue, Yu & Zhang, Peng & Fan, Deli & di He, Hong, 2019. "Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 133-140.
    6. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Arvind Kumar Gupta & Isha Dhiman, 2014. "Analyses of a continuum traffic flow model for a nonlane-based system," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(10), pages 1-24.
    8. Wang, Ting & Cheng, Rongjun & Ge, Hongxia, 2019. "An extended two-lane lattice hydrodynamic model for traffic flow on curved road with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    9. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    10. Shubham Mehta & Raveena Dangi & Vikash Siwach & Poonam Redhu, 2025. "Effect of weather’s visibility on traffic dynamics: a novel lattice hydrodynamic model for curved roads with passing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(1), pages 1-9, January.
    11. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    12. Zhai, Cong & Wu, Weitiao & Zhang, Jiyong & Xiao, Yingping & Zhai, Min, 2024. "An anisotropic macroscopic mixed-flow model integrating the perceptual domains differences impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    13. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s desire for smooth driving on the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    14. Peng, Guanghan & Kuang, Hua & Qing, Li, 2018. "Feedback control method in lattice hydrodynamic model under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 651-656.
    15. Peng, Guanghan & Wu, Kunning & Tan, Huili, 2024. "Bifurcation and phase transitions in heterogeneous non-lane-discipline-based car-following model integrating cooperative feedback control under automated and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    16. Siwach, Vikash & Yadav, Darshana & Redhu, Poonam, 2025. "Enhancing driver’s attention and overtaking efficiency in car-following model for Advanced Driver Assistance Systems (ADAS) vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    17. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    18. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Congestion and phase transitions of heterogeneous continuum model with large trucks mixed with conventional vehicles and ACC vehicles," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    19. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    20. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2024. "Phase transitions of dual-lane lattice model incorporating cyber-attacks on lane change involving inflow and outflow under connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    21. Redhu, Poonam & Gupta, Arvind Kumar, 2015. "Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 249-260.
    22. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    23. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    24. Redhu, Poonam & Siwach, Vikash, 2018. "An extended lattice model accounting for traffic jerk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1473-1480.
    25. Jin, Yanfei & Xu, Meng, 2016. "Stability analysis in a car-following model with reaction-time delay and delayed feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 107-116.
    26. Peng, Guanghan & Yang, Shuhong & Xia, Dongxue & Li, Xiaoqin, 2019. "Delayed-feedback control in a car-following model with the combination of V2V communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    27. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    28. Xiaoqin Li & Yanyan Zhou & Guanghan Peng, 2022. "Impact of interruption probability of the current optimal velocity on traffic stability for car-following model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-10, March.
    29. Peng, Guanghan & Li, Xinhai & Wang, Hailing & Tan, Huili, 2024. "Bifurcation and phase transitions in car-following model integrating driver's characteristic and speed limit on spiral slope roads," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    30. Tang, Tie-Qiao & He, Jia & Yang, Shi-Chun & Shang, Hua-Yan, 2014. "A car-following model accounting for the driver’s attribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 583-591.
    31. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2024. "Phase transitions in a heterogeneous lattice hydrodynamic model involving both communication distance and memory time duration differences," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    32. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "A car-following model considering the effect of electronic throttle opening angle over the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    33. Xiaoqin Li & Yanyan Zhou & Guanghan Peng, 2022. "Impact of interruption probability of the current optimal velocity on traffic stability for car-following model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-10, March.
    34. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    35. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    36. Cheng, Rongjun & Ge, Hongxia & Wang, Jufeng, 2017. "KdV–Burgers equation in a new continuum model based on full velocity difference model considering anticipation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 52-59.
    37. Peng, Guanghan & Huang, Yixin & Tan, Huili, 2024. "Phase transitions and congestion of heterogeneous lattice hydrodynamics model considering delayed difference feedback control in connected autonomous vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    38. Jin, Can & Qing, Li & Zhu, Meilan & Peng, Guanghan, 2025. "Phase transitions and spectral entropy of heterogeneous vehicles comprised of CAVs and HDVs in flux restriction scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    39. Peng, Guanghan & Zhu, Meilan & Tan, Huili, 2024. "Jams and phase transitions in heterogeneous lattice model integrating the continuous delayed feedback control to boycott cyber-attacks under connected autonomous and human driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    40. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Chuan & Kang, Yirong, 2025. "Modeling and optimal congestion control of multi-lane highway traffic with on-ramp and off-ramp under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
    2. Siwach, Vikash & Yadav, Darshana & Redhu, Poonam, 2025. "Enhancing driver’s attention and overtaking efficiency in car-following model for Advanced Driver Assistance Systems (ADAS) vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    3. Jin, Can & Qing, Li & Zhu, Meilan & Peng, Guanghan, 2025. "Phase transitions and spectral entropy of heterogeneous vehicles comprised of CAVs and HDVs in flux restriction scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    4. Peng, Guanghan & Wang, Keke & Tan, Huili & Huang, Darong, 2025. "Jamming transition of connected vehicles platform integrating speed change memory information to counteract cyber-attacks on slope lane," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    5. Verma, Muskan & Gupta, Arvind Kumar & Sharma, Sapna, 2025. "Phase transitions in a multi-phase lattice hydrodynamic area occupancy model in mixed disorder traffic considering connected and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    6. Zhang, Geng & Guo, Hai-Yan & Ren, Yue & Gan, Hao-Ting, 2025. "Stability and phase transition of a novel lattice hydrodynamic model considering different flux information coordination methods," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    7. Peng, Guanghan & Li, Xinhai & Wang, Hailing & Tan, Huili, 2024. "Bifurcation and phase transitions in car-following model integrating driver's characteristic and speed limit on spiral slope roads," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Jin, Can & Peng, Guanghan & Huang, Yixin, 2025. "Phase transitions in operation of heterogeneous vehicles mixed with human-driven and connected autonomous vehicles under speed restriction circumstances," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    9. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    10. Zhai, Cong & Wu, Weitiao & Zhang, Jiyong & Xiao, Yingping & Zhai, Min, 2024. "An anisotropic macroscopic mixed-flow model integrating the perceptual domains differences impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    11. Chen, Yujiao & Zhang, Futao & Qian, Yongsheng & Zeng, Junwei & Li, Xin, 2025. "A new car-following model considering the driver's dynamic reaction time and driving visual angle on the slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 663(C).
    12. Kang, Yi-rong & Tian, Chuan, 2024. "A new curved road lattice model integrating the multiple prediction effect under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    13. Peng, Guanghan & Huang, Yixin & Tan, Huili, 2024. "Phase transitions and congestion of heterogeneous lattice hydrodynamics model considering delayed difference feedback control in connected autonomous vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    14. Peng, Guanghan & Wu, Kunning & Tan, Huili, 2024. "Bifurcation and phase transitions in heterogeneous non-lane-discipline-based car-following model integrating cooperative feedback control under automated and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    15. Peng, Guanghan & Zhu, Meilan & Tan, Huili, 2024. "Jams and phase transitions in heterogeneous lattice model integrating the continuous delayed feedback control to boycott cyber-attacks under connected autonomous and human driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    16. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    18. Yuan, Shijiao & Chen, Qiang, 2025. "Harmony in heterogeneous traffic flow: A lattice hydrodynamic model with perception diversity and predictive effect coordinated by bilaterally controlled CAVs," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    19. Zhang, Xingrong & Cai, Jiaxuan & Chen, Fuzhou & Cheng, Rongjun, 2024. "Multimodal vehicle trajectory prediction and integrated threat assessment algorithm based on adaptive driving intention," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    20. Feng, Weihao & Wang, Bohui, 2025. "Stability analysis and delayed feedback control for platoon of connected automated vehicles with V2X and V2V infrastructure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925003790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.