IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119313676.html
   My bibliography  Save this article

A car-following model considering the effect of electronic throttle opening angle over the curved road

Author

Listed:
  • Sun, Yuqing
  • Ge, Hongxia
  • Cheng, Rongjun

Abstract

This paper proposes an extended car-following model by taking the effect of electronic throttle dynamics into account on the curved road, in which the electronic throttle opening angle difference from multiple preceding vehicles at the previous moment is considered as a delay-feedback control signal. Then, the stability condition of the proposed model is gained using the control theory method. Considering the effects of friction coefficient, radius of curved road, and control signal, the numerical simulations are designed to study the change of traffic flow stability under different parameters. Results show that the radius and friction coefficient have a negative effect on stabilizing traffic flow, while the stability increases with an increase in the delay-feedback control coefficient. In addition, the numerical simulation also verifies that the control signal can reduce the fuel consumption of traffic flow.

Suggested Citation

  • Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "A car-following model considering the effect of electronic throttle opening angle over the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313676
    DOI: 10.1016/j.physa.2019.122377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119313676
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    2. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    3. Qin, Shunda & He, Zhiting & Cheng, Rongjun, 2018. "An extended lattice hydrodynamic model based on control theory considering the memory effect of flux difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 809-816.
    4. Ioannou, P. & Xu, Z., 1994. "Throttle And Brake Control Systems For Automatic Vehicle Following," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1vb6380h, Institute of Transportation Studies, UC Berkeley.
    5. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    6. Ou, Hui & Tang, Tie-Qiao, 2018. "An extended two-lane car-following model accounting for inter-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 260-268.
    7. Li, Zhipeng & Li, Wenzhong & Xu, Shangzhi & Qian, Yeqing, 2015. "Stability analysis of an extended intelligent driver model and its simulations under open boundary condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 526-536.
    8. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    9. Wang, Tao & Tang, Tie-Qiao & Chen, Liang & Huang, Hai-Jun, 2019. "Analysis of trip cost allowing late arrival in a traffic corridor with one entry and one exit under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 387-398.
    10. Tang, Tie-Qiao & Zhang, Bo-Tao & Zhang, Jian & Wang, Tao, 2019. "Statistical analysis and modeling of pedestrian flow in university canteen during peak period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 29-40.
    11. Tang, Tie-Qiao & Luo, Xiao-Feng & Zhang, Jian & Chen, Liang, 2018. "Modeling electric bicycle’s lane-changing and retrograde behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1377-1386.
    12. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    13. Sun, Dihua & Kang, Yirong & Yang, Shuhong, 2015. "A novel car following model considering average speed of preceding vehicles group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 103-109.
    14. Redhu, Poonam & Gupta, Arvind Kumar, 2016. "Effect of forward looking sites on a multi-phase lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 150-160.
    15. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of feedback control scheme on discrete car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 322-330.
    16. Tang, Tie-Qiao & Wang, Tao & Chen, Liang & Huang, Hai-Jun, 2018. "Analysis of the equilibrium trip cost accounting for the fuel cost in a single-lane traffic system without late arrival," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 451-457.
    17. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    18. Cheng, Rongjun & Wang, Yunong, 2019. "An extended lattice hydrodynamic model considering the delayed feedback control on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 510-517.
    19. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    20. Wen-Xing Zhu, 2013. "Motion Energy Dissipation In Traffic Flow On A Curved Road," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(07), pages 1-8.
    21. Zhu, Wen-Xing & Yu, Rui-Ling, 2012. "Nonlinear analysis of traffic flow on a gradient highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 954-965.
    22. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    23. Tang, Tie-Qiao & Rui, Ying-Xu & Zhang, Jian & Shang, Hua-Yan, 2018. "A cellular automation model accounting for bicycle’s group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1782-1797.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    2. Zhang, Futao & Qian, Yongsheng & Zeng, Junwei & Xu, Dejie & Li, Haijun, 2023. "Stability and safety analysis of mixed traffic flow considering network function degradation and platoon driving on the road with a slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2020. "An extended macro model accounting for the driver’s timid and aggressive attributions and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Huimin Liu & Yuhong Wang, 2021. "Impact of Strong Wind and Optimal Estimation of Flux Difference Integral in a Lattice Hydrodynamic Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    7. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    8. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    9. Qi, Xinyue & Ge, Hongxia & Cheng, Rongjun, 2019. "Analysis of a novel lattice hydrodynamic model considering density integral and “backward looking” effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 714-723.
    10. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 326-334.
    11. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    12. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    13. Ma, Xinjuan & Ge, Hongxia & Cheng, Rongjun, 2019. "Influences of acceleration with memory on stability of traffic flow and vehicle’s fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 143-154.
    14. Sun, Fengxin & Wang, Jufeng & Cheng, Rongjun, 2019. "An improved anisotropic continuum model considering the driver’s desire for steady driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1449-1462.
    15. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    16. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    17. Li, Wei-Hong & Huang, Hai-Jun & Shang, Hua-Yan, 2020. "Dynamic equilibrium commuting in a multilane system with ridesharing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    18. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    19. Jin, Zhizhan & Yang, Zaili & Ge, Hongxia, 2018. "Energy consumption investigation for a new car-following model considering driver’s memory and average speed of the vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1038-1049.
    20. Chen, Can & Cheng, Rongjun & Ge, Hongxia, 2019. "An extended car-following model considering driver’s sensory memory and the backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 278-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.