IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v25y2014i10ns0129183114500454.html
   My bibliography  Save this article

Analyses of a continuum traffic flow model for a nonlane-based system

Author

Listed:
  • Arvind Kumar Gupta

    (Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India)

  • Isha Dhiman

    (Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India)

Abstract

We develop a heterogeneous continuum model based upon a car-following model for a nonlane-based system taking lateral separation into account. The criterion for linear stability analysis and traveling wave solution of the homogeneous case is studied. The consideration of the lateral separation not only stabilizes the flow but also shrinks the critical region. For heterogeneous case, the fundamental diagram is examined for two different equilibrium speed-density functions and the effect of lane width is investigated for different compositions of heterogeneous traffic. The theoretical findings agree well with the results of numerical simulation which justifies the applicability of the model to a nonlane-based system.

Suggested Citation

  • Arvind Kumar Gupta & Isha Dhiman, 2014. "Analyses of a continuum traffic flow model for a nonlane-based system," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(10), pages 1-24.
  • Handle: RePEc:wsi:ijmpcx:v:25:y:2014:i:10:n:s0129183114500454
    DOI: 10.1142/S0129183114500454
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183114500454
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183114500454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Tie-Qiao & Yi, Zhi-Yan & Zhang, Jian & Wang, Tao & Leng, Jun-Qiang, 2018. "A speed guidance strategy for multiple signalized intersections based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 399-409.
    2. Tang, Tie-Qiao & Rui, Ying-Xu & Zhang, Jian & Wang, Tao, 2018. "Impacts of group behavior on bicycle flow at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1205-1215.
    3. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
    4. Tang, Tie-Qiao & Zhang, Jian & Chen, Liang & Shang, Hua-Yan, 2017. "Analysis of vehicle’s safety envelope under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 127-133.
    5. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    6. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Li, Chuan-Yao & Sun, Qi-Jia, 2019. "Influence of coarse toll on the dynamic properties of traffic flow in a single-entry traffic corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Zhao, Jing & Li, Peng, 2017. "An extended car-following model with consideration of vehicle to vehicle communication of two conflicting streams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 178-187.
    9. Leng, Jun-qiang & Zhai, Jing & Li, Qian-wen & Zhao, Lin, 2018. "Construction of road network vulnerability evaluation index based on general travel cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 421-429.
    10. Rong, Ying & Wen, Huiying, 2018. "Non-lane-discipline-based car-following model under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 278-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:25:y:2014:i:10:n:s0129183114500454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.