IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924015145.html
   My bibliography  Save this article

Phase transitions and spectral entropy of heterogeneous vehicles comprised of CAVs and HDVs in flux restriction scenarios

Author

Listed:
  • Jin, Can
  • Qing, Li
  • Zhu, Meilan
  • Peng, Guanghan

Abstract

The shape of roads and physical facilities are important factors that affect traffic operation. Therefore, on many road sections, flux restriction measures are adopted to cope with traffic safety and smoothness under complex road conditions. Accordingly, the flux restriction information is more easily obtained by connected autonomous vehicles (CAVs) than human driven vehicles (HDVs). Subsequently, the flux restriction difference effect (FRDE) is supplied to create a heterogeneous lattice model comprised of CAVs and HDVs. Additionally, both linear and nonlinear analyses are executed to investigate the FRDE impact on phase transitions. Moreover, the density variation and the density difference are explored to state the influence of FRDE on mixed traffic congestions from two factors involving the penetration of CAVs and the FRDE through simulation. Also, based on power spectrum theory, we investigate the spectral entropy to reveal the impact of the penetration of CAVs and the FRDE on mixed traffic from deep perspective via simulation.

Suggested Citation

  • Jin, Can & Qing, Li & Zhu, Meilan & Peng, Guanghan, 2025. "Phase transitions and spectral entropy of heterogeneous vehicles comprised of CAVs and HDVs in flux restriction scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924015145
    DOI: 10.1016/j.chaos.2024.115962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924015145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Darabsah, Isam & Hsueh, Kuei-Fang & Khalil, Abdelrahman & Al Janaideh, Mohammad & Campbell, Sue Ann & Kundur, Deepa, 2024. "Validation of an autonomous vehicle platoons model with time-varying communication delays," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Wang, Zhengwu & Chen, Tao & Wang, Yi & Li, Hao, 2024. "A cellular automaton model for mixed traffic flow considering the size of CAV platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    3. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    6. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    7. Verma, Muskan & Singla, Tanvi & Gupta, Arvind Kumar & Sharma, Sapna, 2024. "The role of occupancy on traffic flow in a multiple-loop network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    8. Peng, Guanghan & Wu, Kunning & Tan, Huili, 2024. "Bifurcation and phase transitions in heterogeneous non-lane-discipline-based car-following model integrating cooperative feedback control under automated and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    9. Verma, Muskan & Sharma, Sapna, 2022. "Chaotic jam and phase transitions in a lattice model with density dependent passing," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Nagatani, Takashi, 1999. "TDGL and MKdV equations for jamming transition in the lattice models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 581-592.
    11. Siwach, Vikash & Yadav, Darshana & Redhu, Poonam, 2025. "Enhancing driver’s attention and overtaking efficiency in car-following model for Advanced Driver Assistance Systems (ADAS) vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    12. Verma, Muskan & Sharma, Sapna, 2023. "Modeling heterogeneity in an open percolation backbone fractal traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    13. Peng, Yong & Liu, Shijie & Yu, Dennis Z., 2020. "An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    14. Verma, Muskan & Sharma, Sapna, 2023. "The role of occupancy and transition rate on traffic flow in a percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Congestion and phase transitions of heterogeneous continuum model with large trucks mixed with conventional vehicles and ACC vehicles," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    16. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2024. "Phase transitions of dual-lane lattice model incorporating cyber-attacks on lane change involving inflow and outflow under connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    17. Nagatani, Takashi, 1999. "Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(1), pages 297-310.
    18. Xie, Jiemin & Chen, Mengqi & You, Linlin & Jiang, Gege & Wu, Junxian & Sun, Tuo & Hao, Ruochen, 2024. "Cellular automaton model for the analysis of design and plan of bus station in the mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    19. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    20. Peng, Guanghan & Li, Xinhai & Wang, Hailing & Tan, Huili, 2024. "Bifurcation and phase transitions in car-following model integrating driver's characteristic and speed limit on spiral slope roads," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    21. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2024. "Phase transitions in a heterogeneous lattice hydrodynamic model involving both communication distance and memory time duration differences," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    22. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    23. Nagatani, Takashi, 1999. "Jamming transition of high-dimensional traffic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(3), pages 592-611.
    24. Kokubo, Satoshi & Tanimoto, Jun & Hagishima, Aya, 2011. "A new Cellular Automata Model including a decelerating damping effect to reproduce Kerner’s three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 561-568.
    25. Peng, Guanghan & Huang, Yixin & Tan, Huili, 2024. "Phase transitions and congestion of heterogeneous lattice hydrodynamics model considering delayed difference feedback control in connected autonomous vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verma, Muskan & Gupta, Arvind Kumar & Sharma, Sapna, 2025. "Phase transitions in a multi-phase lattice hydrodynamic area occupancy model in mixed disorder traffic considering connected and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    2. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2024. "Phase transitions in a heterogeneous lattice hydrodynamic model involving both communication distance and memory time duration differences," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    3. Peng, Guanghan & Zhu, Meilan & Tan, Huili, 2024. "Jams and phase transitions in heterogeneous lattice model integrating the continuous delayed feedback control to boycott cyber-attacks under connected autonomous and human driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    4. Muskan Verma & Arvind Kumar Gupta & Sapna Sharma, 2024. "Traffic flow dynamics and oscillation control in conserved fractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-12, October.
    5. Peng, Guanghan & Huang, Yixin & Tan, Huili, 2024. "Phase transitions and congestion of heterogeneous lattice hydrodynamics model considering delayed difference feedback control in connected autonomous vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    6. Kang, Yi-rong & Tian, Chuan, 2024. "A new curved road lattice model integrating the multiple prediction effect under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    7. Zhai, Cong & Wu, Weitiao & Zhang, Jiyong & Xiao, Yingping & Zhai, Min, 2024. "An anisotropic macroscopic mixed-flow model integrating the perceptual domains differences impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    8. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Zhang, Xingrong & Cai, Jiaxuan & Chen, Fuzhou & Cheng, Rongjun, 2024. "Multimodal vehicle trajectory prediction and integrated threat assessment algorithm based on adaptive driving intention," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    10. Verma, Muskan & Singla, Tanvi & Gupta, Arvind Kumar & Sharma, Sapna, 2024. "The role of occupancy on traffic flow in a multiple-loop network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Cen, Bing-ling & Xue, Yu & Zhang, Yi-cai & Wang, Xue & He, Hong-di, 2020. "A feedback control method with consideration of the next-nearest-neighbor interactions in a lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    12. Qi, Weiwei & Wang, Wenyi & Fu, Chuanyun, 2024. "A following model considering multiple vehicles from the driver's front and rear perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    13. Verma, Muskan & Sharma, Sapna, 2023. "Modeling heterogeneity in an open percolation backbone fractal traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    14. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2023. "Chaotic jam and phase transitions in heterogeneous lattice model integrating the delay characteristics difference with passing effect under autonomous and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Congestion and phase transitions of heterogeneous continuum model with large trucks mixed with conventional vehicles and ACC vehicles," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    16. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    18. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    19. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    20. Peng, Guanghan & Wu, Kunning & Tan, Huili, 2024. "Bifurcation and phase transitions in heterogeneous non-lane-discipline-based car-following model integrating cooperative feedback control under automated and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924015145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.