IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004060.html
   My bibliography  Save this article

Stability and phase transition of a novel lattice hydrodynamic model considering different flux information coordination methods

Author

Listed:
  • Zhang, Geng
  • Guo, Hai-Yan
  • Ren, Yue
  • Gan, Hao-Ting

Abstract

With the continuous increase of road traffic flow, traffic congestion is becoming increasingly severe. To reduce traffic jam, cooperative driving of vehicles under the environment of Internet of Vehicles is an effective method. Aiming at the difference of cognition and utilization of the target vehicle for its preceding and following traffic information, a novel lattice hydrodynamic model by considering different flux information coordination methods is developed. In the new model, the flux differential information of the preceding road section and the flux integration information of the following road section are taken into account. By applying linear stability analysis, the linear stability condition of the new model is acquired and it shows that as the effects of flux differential information and flux integration information increasing, the stable region of the new model significantly expands. Then, nonlinear stability analysis method is adopted to derive the modified Korteweg-de Vries (mKdV) equation to describe the transition characteristics of the unstable density waves. Finally, through numerical simulation experiments, the active impact of flux differential information and flux integration information on traffic stability is demonstrated. The result is helpful in enhancing traffic performance under Internet of Vehicles environment.

Suggested Citation

  • Zhang, Geng & Guo, Hai-Yan & Ren, Yue & Gan, Hao-Ting, 2025. "Stability and phase transition of a novel lattice hydrodynamic model considering different flux information coordination methods," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004060
    DOI: 10.1016/j.chaos.2025.116393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    2. Yuxuan Li & Tong Zhou & Guanghan Peng, 2023. "Incorporating the traffic interruption probability effect during evolution process in two-lane lattice hydrodynamic model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-9, March.
    3. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2023. "Chaotic jam and phase transitions in heterogeneous lattice model integrating the delay characteristics difference with passing effect under autonomous and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Xinyue Qi & Hongxia Ge & Rongjun Cheng, 2020. "Analysis of a Novel Two-Lane Hydrodynamic Lattice Model Accounting for Driver’s Aggressive Effect and Flow Difference Integral," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, May.
    5. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    8. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    9. Zhai, Cong & Wu, Weitiao & Zhang, Jiyong & Xiao, Yingping & Zhai, Min, 2024. "An anisotropic macroscopic mixed-flow model integrating the perceptual domains differences impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    10. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    11. Kang, Yi-rong & Tian, Chuan, 2024. "A new curved road lattice model integrating the multiple prediction effect under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    12. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    13. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2024. "Phase transitions of dual-lane lattice model incorporating cyber-attacks on lane change involving inflow and outflow under connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    14. Zhang, Yicai & Zhao, Min & Sun, Dihua & Liu, Xiaoyu & Huang, Shuai & Chen, Dong, 2022. "Robust H-infinity control for connected vehicles in lattice hydrodynamic model at highway tunnel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    15. Zhipeng Li & Xingli Li & Fuqiang Liu, 2008. "STABILIZATION ANALYSIS AND MODIFIED KdV EQUATION OF LATTICE MODELS WITH CONSIDERATION OF RELATIVE CURRENT," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1163-1173.
    16. Wang, Ting & Cheng, Rongjun & Ge, Hongxia, 2019. "Analysis of a novel lattice hydrodynamic model considering predictive effect and flow integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    17. Min Zhao & Jin Wan & Wenzhi Qin & Xin Huang & Zhipeng Xu & M Syed Ali, 2022. "A New Two-Lane Lattice Model with the Consideration of the Driver’s Self-Anticipation Current Difference Effect," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, January.
    18. Tian, Jun-fang & Yuan, Zhen-zhou & Jia, Bin & Li, Ming-hua & Jiang, Guo-jun, 2012. "The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4476-4482.
    19. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2024. "Phase transitions in a heterogeneous lattice hydrodynamic model involving both communication distance and memory time duration differences," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    20. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    21. Peng, Guanghan & Huang, Yixin & Tan, Huili, 2024. "Phase transitions and congestion of heterogeneous lattice hydrodynamics model considering delayed difference feedback control in connected autonomous vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Chuan & Kang, Yirong, 2025. "Modeling and optimal congestion control of multi-lane highway traffic with on-ramp and off-ramp under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
    2. Yadav, Darshana & Siwach, Vikash & Redhu, Poonam, 2025. "The interplay of passing, driver attention, and cyber attack-induced information delays on traffic stability," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    3. Jin, Can & Qing, Li & Zhu, Meilan & Peng, Guanghan, 2025. "Phase transitions and spectral entropy of heterogeneous vehicles comprised of CAVs and HDVs in flux restriction scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    4. Jin, Can & Peng, Guanghan & Huang, Yixin, 2025. "Phase transitions in operation of heterogeneous vehicles mixed with human-driven and connected autonomous vehicles under speed restriction circumstances," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    5. Verma, Muskan & Gupta, Arvind Kumar & Sharma, Sapna, 2025. "Phase transitions in a multi-phase lattice hydrodynamic area occupancy model in mixed disorder traffic considering connected and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    6. Peng, Guanghan & Huang, Yixin & Tan, Huili, 2024. "Phase transitions and congestion of heterogeneous lattice hydrodynamics model considering delayed difference feedback control in connected autonomous vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    7. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2024. "Phase transitions in a heterogeneous lattice hydrodynamic model involving both communication distance and memory time duration differences," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    8. Yuan, Shijiao & Chen, Qiang, 2025. "Harmony in heterogeneous traffic flow: A lattice hydrodynamic model with perception diversity and predictive effect coordinated by bilaterally controlled CAVs," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    9. Chen, Yujiao & Zhang, Futao & Qian, Yongsheng & Zeng, Junwei & Li, Xin, 2025. "A new car-following model considering the driver's dynamic reaction time and driving visual angle on the slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 663(C).
    10. Zhai, Cong & Wu, Weitiao & Xiao, Yingping & Luo, Qiang & Zhang, Yusong, 2022. "Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Peng, Guanghan & Wang, Keke & Tan, Huili & Huang, Darong, 2025. "Jamming transition of connected vehicles platform integrating speed change memory information to counteract cyber-attacks on slope lane," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    12. Kang, Yi-rong & Tian, Chuan, 2024. "A new curved road lattice model integrating the multiple prediction effect under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    13. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    14. Zhai, Cong & Wu, Weitiao & Zhang, Jiyong & Xiao, Yingping & Zhai, Min, 2024. "An anisotropic macroscopic mixed-flow model integrating the perceptual domains differences impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    15. Peng, Guanghan & Zhu, Meilan & Tan, Huili, 2024. "Jams and phase transitions in heterogeneous lattice model integrating the continuous delayed feedback control to boycott cyber-attacks under connected autonomous and human driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    16. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    17. Nikita Madaan & Sapna Sharma, 2022. "Influence of driver’s behavior with empirical lane changing on the traffic dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-11, January.
    18. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    19. Hu, Junjie & Lee, Jaeyoung Jay, 2025. "Car following dynamics in mixed traffic flow of autonomous and human-driven vehicles: Complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
    20. Wu, Xinyu & Xiao, Xinping, 2024. "An improved stochastic car-following model considering the complete state information of multiple preceding vehicles under connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.