IDEAS home Printed from
   My bibliography  Save this article

Population-driven Urban Road Evolution Dynamic Model


  • Fangxia Zhao

    () (Beijing Jiaotong University)

  • Jianjun Wu

    () (Beijing Jiaotong University)

  • Huijun Sun

    (Beijing Jiaotong University)

  • Ziyou Gao

    (Beijing Jiaotong University)

  • Ronghui Liu

    (University of Leeds)


In this paper, we propose a road evolution model by considering the interaction between population distribution and urban road network. In the model, new roads need to be constructed when new zones are built, and existing zones with higher population density have higher probability to connect with new roads. The relative neighborhood graph and a Fermat-Weber location problem are introduced as the connection mechanism to capture the characteristics of road evolution. The simulation experiment is conducted to demonstrate the effects of population on road evolution. Moreover, the topological attributes for the urban road network are evaluated using degree distribution, betweenness centrality, coverage, circuitness and treeness in the experiment. Simulation results show that the distribution of population in the city has a significant influence on the shape of road network, leading to a growing heterogeneous topology.

Suggested Citation

  • Fangxia Zhao & Jianjun Wu & Huijun Sun & Ziyou Gao & Ronghui Liu, 2016. "Population-driven Urban Road Evolution Dynamic Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 997-1018, December.
  • Handle: RePEc:kap:netspa:v:16:y:2016:i:4:d:10.1007_s11067-015-9308-4
    DOI: 10.1007/s11067-015-9308-4

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. David Levinson & Bhanu Yerra, 2006. "Self-Organization of Surface Transportation Networks," Transportation Science, INFORMS, vol. 40(2), pages 179-188, May.
    2. Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
    3. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    4. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    5. Wen-yi Zhang & Wei Guan & Ji-hui Ma & Jun-fang Tian, 2015. "A Nonlinear Pairwise Swapping Dynamics to Model the Selfish Rerouting Evolutionary Game," Networks and Spatial Economics, Springer, vol. 15(4), pages 1075-1092, December.
    6. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    7. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    8. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    9. D E Boyce, 1984. "Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects," Environment and Planning A, , vol. 16(11), pages 1445-1474, November.
    10. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    11. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    12. Yang, Hai & Huang, Hai-Jun, 1998. "Principle of marginal-cost pricing: how does it work in a general road network?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 45-54, January.
    13. David Levinson, 2008. "Density and dispersion: the co-development of land use and rail in London," Journal of Economic Geography, Oxford University Press, vol. 8(1), pages 55-77, January.
    14. Zhao, F.X. & Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2015. "Role of human moving on city spatial evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 642-650.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Liyin Shen & Lei Du & Xining Yang & Xiaoyun Du & Jinhuan Wang & Jianli Hao, 2018. "Sustainable Strategies for Transportation Development in Emerging Cities in China: A Simulation Approach," Sustainability, MDPI, Open Access Journal, vol. 10(3), pages 1-1, March.
    2. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    3. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    4. Y. G. Melese & P. W. Heijnen & R. M. Stikkelman & P. M. Herder, 2017. "An Approach for Integrating Valuable Flexibility During Conceptual Design of Networks," Networks and Spatial Economics, Springer, vol. 17(2), pages 317-341, June.
    5. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    6. Dali Wei & Changwei Yuan & Hongchao Liu & Dayong Wu & Wesley Kumfer, 2017. "The Impact of Service Refusal to the Supply–Demand Equilibrium in the Taxicab Market," Networks and Spatial Economics, Springer, vol. 17(1), pages 225-253, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:16:y:2016:i:4:d:10.1007_s11067-015-9308-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.