IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v43y2016i4p698-715.html
   My bibliography  Save this article

Empirical analysis of road networks evolution patterns in a government-oriented development area

Author

Listed:
  • Lei Kang
  • Chao Yang
  • Jeffrey C Peters
  • Peng Zeng

Abstract

Greater understanding of the topological evolution characteristics of the supply side of urban transport systems could help urban planners and policy makers uncover patterns of both city growth and road development. This paper examines the road network topological evolution characteristics of a unique government-oriented development district, Shanghai Pudong New District, from 1995 to 2007, where a road-name–based dual approach is adopted to capture the homogeneity and functional continuity of different segments. The urban road network is found to evolve from a broad-scale system to a scale-free system driven by the government interventions. A generalized extreme value distribution is utilized to provide a general form for the road network topological evolution model with a good fit. This scale-free road network has shown to be effective in supporting economic development. This paper offers a new perspective that describes the patterns of topological evolution characteristics for transportation planners regarding network design and urban planning in the long run.

Suggested Citation

  • Lei Kang & Chao Yang & Jeffrey C Peters & Peng Zeng, 2016. "Empirical analysis of road networks evolution patterns in a government-oriented development area," Environment and Planning B, , vol. 43(4), pages 698-715, July.
  • Handle: RePEc:sae:envirb:v:43:y:2016:i:4:p:698-715
    DOI: 10.1177/0265813515614695
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0265813515614695
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0265813515614695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2012. "Network Structure and Spatial Separation," Environment and Planning B, , vol. 39(1), pages 137-154, February.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    3. David Levinson & Feng Xie & Norah Oca, 2012. "Forecasting and Evaluating Network Growth," Networks and Spatial Economics, Springer, vol. 12(2), pages 239-262, June.
    4. Pavithra Parthasarathi & David Levinson, 2010. "Network Structure and Metropolitan Mobility," Working Papers 000083, University of Minnesota: Nexus Research Group.
    5. David Levinson, 2008. "Density and dispersion: the co-development of land use and rail in London," Journal of Economic Geography, Oxford University Press, vol. 8(1), pages 55-77, January.
    6. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    7. Yuan, PengCheng & Juan, ZhiCai, 2013. "Urban road network evolution mechanism based on the ‘direction preferred connection’ and ‘degree constraint’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5186-5193.
    8. Marc Barthélemy & Alessandro Flammini, 2009. "Co-evolution of Density and Topology in a Simple Model of City Formation," Networks and Spatial Economics, Springer, vol. 9(3), pages 401-425, September.
    9. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    10. Feng Xie & David Levinson, 2009. "Modeling the Growth of Transportation Networks: A Comprehensive Review," Networks and Spatial Economics, Springer, vol. 9(3), pages 291-307, September.
    11. Laurie Schintler & Rajendra Kulkarni & Sean Gorman & Roger Stough, 2007. "Using Raster-Based GIS and Graph Theory to Analyze Complex Networks," Networks and Spatial Economics, Springer, vol. 7(4), pages 301-313, December.
    12. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    13. Fredrik Liljeros & Christofer R. Edling & Luís A. Nunes Amaral & H. Eugene Stanley & Yvonne Åberg, 2001. "The web of human sexual contacts," Nature, Nature, vol. 411(6840), pages 907-908, June.
    14. Lämmer, Stefan & Gehlsen, Björn & Helbing, Dirk, 2006. "Scaling laws in the spatial structure of urban road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 89-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    2. Xu, Mingtao & Ye, Zhirui & Shan, Xiaofeng, 2016. "Modeling, analysis, and simulation of the co-development of road networks and vehicle ownership," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 417-428.
    3. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    4. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & Li, Rong & Wu, Jianjun, 2017. "Heuristic urban transportation network design method, a multilayer coevolution approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 71-83.
    5. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    6. Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    7. Fangxia Zhao & Jianjun Wu & Huijun Sun & Ziyou Gao & Ronghui Liu, 2016. "Population-driven Urban Road Evolution Dynamic Model," Networks and Spatial Economics, Springer, vol. 16(4), pages 997-1018, December.
    8. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    9. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    10. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    11. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
    12. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    13. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    14. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    15. Wang, Shiguang & Zheng, Lili & Yu, Dexin, 2017. "The improved degree of urban road traffic network: A case study of Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 256-264.
    16. Asya Natapov & Daniel Czamanski & Dafna Fisher-Gewirtzman, 2018. "A Network Approach to Link Visibility and Urban Activity Location," Networks and Spatial Economics, Springer, vol. 18(3), pages 555-575, September.
    17. Ding, Rui & Zhou, Tao & Zhang, Yilin & Du, YiMing & Chen, Shihui & Fu, Jun & Du, Linyu & Zhang, Ting & Li, Tongfei, 2022. "The influence of average speed ratio on multilayer traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    18. Dupuy, Gabriel, 2013. "Network geometry and the urban railway system: the potential benefits to geographers of harnessing inputs from “naive” outsiders," Journal of Transport Geography, Elsevier, vol. 33(C), pages 85-94.
    19. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    20. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:43:y:2016:i:4:p:698-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.