IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v118y2018icp292-304.html
   My bibliography  Save this article

Network structure and the journey to work: An intra-metropolitan analysis

Author

Listed:
  • Parthasarathi, Pavithra
  • Levinson, David

Abstract

This research quantifies the variation of network structure within the Minneapolis - St. Paul metropolitan area and relates it to average travel time to work for each Minor Civil Division (MCD) in the metro area. The variation of these measures within the metropolitan area is analyzed spatially. The measures of network structure are then related to observed travel. Better connected networks have lower average travel times, all else equal. The results corroborate a relation between network structure and travel and point to the importance of understanding the underlying street network structure.

Suggested Citation

  • Parthasarathi, Pavithra & Levinson, David, 2018. "Network structure and the journey to work: An intra-metropolitan analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 292-304.
  • Handle: RePEc:eee:transa:v:118:y:2018:i:c:p:292-304
    DOI: 10.1016/j.tra.2018.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856417302549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2012. "Network Structure and Spatial Separation," Environment and Planning B, , vol. 39(1), pages 137-154, February.
    2. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2015. "Street network structure and household activity spaces," Urban Studies, Urban Studies Journal Limited, vol. 52(6), pages 1090-1112, May.
    3. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    4. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    5. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    6. Jessica Schoner & David Levinson, 2014. "The missing link: bicycle infrastructure networks and ridership in 74 US cities," Transportation, Springer, vol. 41(6), pages 1187-1204, November.
    7. Jenelius, Erik, 2009. "Network structure and travel patterns: explaining the geographical disparities of road network vulnerability," Journal of Transport Geography, Elsevier, vol. 17(3), pages 234-244.
    8. Guangqing Chi & Jun Zhu, 2008. "Spatial Regression Models for Demographic Analysis," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 27(1), pages 17-42, February.
    9. Marshall, Wesley & Garrick, Norman, 2012. "Community design and how much we drive," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(2), pages 5-21.
    10. M. T. Gastner & M. E.J. Newman, 2006. "The spatial structure of networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(2), pages 247-252, January.
    11. Handy, Susan L, 2002. "Accessibility- vs. Mobility-Enhancing Strategies for Addressing Automobile Dependence in the U.S," Institute of Transportation Studies, Working Paper Series qt5kn4s4pb, Institute of Transportation Studies, UC Davis.
    12. David Levinson, 1998. "Accessibility and the Journey to Work," Working Papers 199802, University of Minnesota: Nexus Research Group.
    13. Levinson, David & El-Geneidy, Ahmed, 2009. "The minimum circuity frontier and the journey to work," Regional Science and Urban Economics, Elsevier, vol. 39(6), pages 732-738, November.
    14. Sybil Derrible, 2012. "Network Centrality of Metro Systems," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    15. B Hillier & J Hanson & H Graham, 1987. "Ideas are in Things: An Application of the Space Syntax Method to Discovering House Genotypes," Environment and Planning B, , vol. 14(4), pages 363-385, December.
    16. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    17. Parthasarathi, Pavithra, 2014. "Network structure and metropolitan mobility," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 153-168.
    18. Ballou, Ronald H. & Rahardja, Handoko & Sakai, Noriaki, 2002. "Selected country circuity factors for road travel distance estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 843-848, November.
    19. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barroso, Joana Maia Fernandes & Albuquerque-Oliveira, João Lucas & Oliveira-Neto, Francisco Moraes, 2020. "Correlation analysis of day-to-day origin-destination flows and traffic volumes in urban networks," Journal of Transport Geography, Elsevier, vol. 89(C).
    2. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Sai Chand & Zhuolin Li & Abdulmajeed Alsultan & Vinayak V. Dixit, 2022. "Comparing and Contrasting the Impacts of Macro-Level Factors on Crash Duration and Frequency," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    4. Zhou, You & Zhang, Lingzhu & JF Chiaradia, Alain, 2022. "Estimating wider economic impacts of transport infrastructure Investment: Evidence from accessibility disparity in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 220-235.
    5. Novak, D.C. & Sullivan, J.F. & Sentoff, K. & Dowds, J., 2020. "A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 436-451.
    6. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2015. "Street network structure and household activity spaces," Urban Studies, Urban Studies Journal Limited, vol. 52(6), pages 1090-1112, May.
    2. Huang, Jie & Levinson, David M., 2015. "Circuity in urban transit networks," Journal of Transport Geography, Elsevier, vol. 48(C), pages 145-153.
    3. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    4. Mengying Cui & David Levinson, 2015. "Accessibility and the Ring of Unreliability," Working Papers 000133, University of Minnesota: Nexus Research Group.
    5. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    6. Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    7. Boeing, Geoff, 2017. "The Relative Circuity of Walkable and Drivable Urban Street Networks," SocArXiv 4rzqa, Center for Open Science.
    8. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    9. David Giacomin & Luke James & David Levinson, 2012. "Trends in Metropolitan Network Circuity," Working Papers 000106, University of Minnesota: Nexus Research Group.
    10. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    11. Zengwang Xu & Daniel Sui, 2007. "Small-world characteristics on transportation networks: a perspective from network autocorrelation," Journal of Geographical Systems, Springer, vol. 9(2), pages 189-205, June.
    12. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).
    13. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    14. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    16. Parthasarathi, Pavithra, 2014. "Network structure and metropolitan mobility," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 153-168.
    17. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    18. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    19. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    20. David Levinson & David Giacomin & Antony Badsey-Ellis, 2014. "Accessibility and the choice of network investments in the London Underground," Working Papers 000124, University of Minnesota: Nexus Research Group.

    More about this item

    Keywords

    Network structure; Topology; Connectivity; Travel behavior;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:118:y:2018:i:c:p:292-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.