IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004594.html
   My bibliography  Save this article

Improving Collective Estimations Using Resistance to Social Influence

Author

Listed:
  • Gabriel Madirolas
  • Gonzalo G de Polavieja

Abstract

Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.Author Summary: We modelled how humans interact, and used the models to find strategies that can make groups more accurate. Each individual in a group combines private and public information to make estimations. But when the public information is biased, social information has the effect of making groups agree even more on an incorrect collective estimation. We reasoned that not all individuals should be influenced equally by the incorrect public information. We obtained a model to understand how private and social information are combined, and used it to obtain a value of social resistance for each individual. We then used these values of social resistance obtained from the model to extract the subgroup of people resisting social influence, and found that they give an improved collective estimation. Collective intelligence is thus maximal when taking into account individuality in human behavior.

Suggested Citation

  • Gabriel Madirolas & Gonzalo G de Polavieja, 2015. "Improving Collective Estimations Using Resistance to Social Influence," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-16, November.
  • Handle: RePEc:plo:pcbi00:1004594
    DOI: 10.1371/journal.pcbi.1004594
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004594
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004594&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    3. Pavlin Mavrodiev & Claudio J. Tessone & Frank Schweitzer, "undated". "Quantifying the effects of social influence," Working Papers ETH-RC-13-001, ETH Zurich, Chair of Systems Design.
    4. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, October.
    5. Sniezek, Janet A. & Henry, Rebecca A., 1989. "Accuracy and confidence in group judgment," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua Aaron Becker & Douglas Guilbeault & Edward Bishop Smith, 2022. "The Crowd Classification Problem: Social Dynamics of Binary-Choice Accuracy," Management Science, INFORMS, vol. 68(5), pages 3949-3965, May.
    2. Bertrand Jayles & Ramon Escobedo & Stéphane Cezera & Adrien Blanchet & Tatsuya Kameda & Clément Sire & Guy Théraulaz, 2020. "The impact of incorrect social information on collective wisdom in human groups," Post-Print hal-03019820, HAL.
    3. Bertrand Jayles & Clément Sire & Ralf H J M Kurvers, 2021. "Crowd control: Reducing individual estimation bias by sharing biased social information," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-28, November.
    4. Vincenz Frey & Arnout van de Rijt, 2021. "Social Influence Undermines the Wisdom of the Crowd in Sequential Decision Making," Management Science, INFORMS, vol. 67(7), pages 4273-4286, July.
    5. Jayles, Bertrand & Escobedo, Ramon & Cezera, Stéphane & Blanchet, Adrien & Kameda, Tatsuya & Sire, Clément & Théraulaz, Guy, 2020. "The impact of incorrect social information on collective wisdom in human groups," TSE Working Papers 1101, Toulouse School of Economics (TSE).
    6. Mariko I Ito & Hisashi Ohtsuki & Akira Sasaki, 2018. "Emergence of opinion leaders in reference networks," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-21, March.
    7. Christian Ganser & Marc Keuschnigg, 2018. "Social Influence Strengthens Crowd Wisdom Under Voting," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-23, September.
    8. Joshua Becker & Douglas Guilbeault & Ned Smith, 2021. "The Crowd Classification Problem: Social Dynamics of Binary Choice Accuracy," Papers 2104.11300, arXiv.org.
    9. Christos C Ioannou & Gabriel Madirolas & Faith S Brammer & Hannah A Rapley & Gonzalo G de Polavieja, 2018. "Adolescents show collective intelligence which can be driven by a geometric mean rule of thumb," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keller, Jonas & von der Gracht, Heiko A., 2014. "The influence of information and communication technology (ICT) on future foresight processes — Results from a Delphi survey," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 81-92.
    2. Ivo Blohm & Christoph Riedl & Johann Füller & Jan Marco Leimeister, 2016. "Rate or Trade? Identifying Winning Ideas in Open Idea Sourcing," Information Systems Research, INFORMS, vol. 27(1), pages 27-48, March.
    3. Jean M Carlson & David L Alderson & Sean P Stromberg & Danielle S Bassett & Emily M Craparo & Francisco Guiterrez-Villarreal & Thomas Otani, 2014. "Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-17, February.
    4. Kerr, Norbert L. & Tindale, R. Scott, 2011. "Group-based forecasting?: A social psychological analysis," International Journal of Forecasting, Elsevier, vol. 27(1), pages 14-40, January.
    5. Kerr, Norbert L. & Tindale, R. Scott, 2011. "Group-based forecasting?: A social psychological analysis," International Journal of Forecasting, Elsevier, vol. 27(1), pages 14-40.
    6. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    7. Meirowitz, Adam, 2005. "Deliberative Democracy or Market Democracy: Designing Institutions to Aggregate Preferences and Information," Papers 03-28-2005, Princeton University, Research Program in Political Economy.
    8. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    9. Byung-Yeon Kim & Gerard Roland, 2011. "Are the Markets Afraid of Kim Jong-Il?," KIER Working Papers 789, Kyoto University, Institute of Economic Research.
    10. Dindo, Pietro & Massari, Filippo, 2020. "The wisdom of the crowd in dynamic economies," Theoretical Economics, Econometric Society, vol. 15(4), November.
    11. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    12. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    13. Siemroth, Christoph, 2014. "Why prediction markets work : The role of information acquisition and endogenous weighting," Working Papers 14-02, University of Mannheim, Department of Economics.
    14. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    15. Coleman, S., 2010. "Russian Election Reform and the Effect of Social Conformity on Voting and the Party System: 2007 and 2008," Journal of the New Economic Association, New Economic Association, issue 5, pages 73-90.
    16. Justin Wolfers & Eric Zitzewitz, 2006. "Interpreting prediction market prices as probabilities," Working Paper Series 2006-11, Federal Reserve Bank of San Francisco.
    17. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    18. McKenzie, Jordi, 2013. "Predicting box office with and without markets: Do internet users know anything?," Information Economics and Policy, Elsevier, vol. 25(2), pages 70-80.
    19. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    20. Bernd (B.) Heidergott & Jia-Ping Huang & Ines (I.) Lindner, 2018. "Naive Learning in Social Networks with Random Communication," Tinbergen Institute Discussion Papers 18-018/II, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.