IDEAS home Printed from https://ideas.repec.org/a/onb/oenbfi/y2014i1b2.html
   My bibliography  Save this article

Can Trade Partners Help Better FORCEE the Future? Impact of Trade Linkages on Economic Growth Forecasts in Selected CESEE Countries

Author

Listed:

Abstract

For Central, Eastern and Southeastern European (CESEE) countries, the euro area is the most important export destination. Nevertheless, geographical export patterns differ among individual CESEE countries, and economic growth within the euro area has diverged in the run-up to and since the economic and financial crisis. We therefore examine the effects such heterogeneous developments have had on trade – and thus economic growth – in CESEE. Given the importance of such spillovers for macroeconomic projections, we evaluate the OeNB’s macroeconomic forecasting model (FORCEE) for Bulgaria, Croatia, the Czech Republic, Hungary, Poland and Romania. The FORCEE model captures trade spillovers via aggregate demand from the euro area. We challenge this simplification by introducing a more differentiated representation of the regional structure of trading partners. Our results show that such a modification improves the forecasting performance of our structural macro model in particular for the three Southeastern European countries in our sample. However, our tests do not yet account for the additional uncertainty introduced into the model by broadening the set of external assumptions, when we cover external demand from a wider range of partner countries.

Suggested Citation

  • Tomáš Slacík & Katharina Steiner & Julia Wörz, 2014. "Can Trade Partners Help Better FORCEE the Future? Impact of Trade Linkages on Economic Growth Forecasts in Selected CESEE Countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 1, pages 36-56.
  • Handle: RePEc:onb:oenbfi:y:2014:i:1:b:2
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:52843f50-d4f4-4625-a8bd-98000f24d47f/feei_2014_q1_studies_slacik.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia, 2009. "Comments on "Forecasting economic and financial variables with global VARs"," International Journal of Forecasting, Elsevier, vol. 25(4), pages 684-686, October.
    2. Richard Baldwin & Javier Lopez-Gonzalez, 2015. "Supply-chain Trade: A Portrait of Global Patterns and Several Testable Hypotheses," The World Economy, Wiley Blackwell, vol. 38(11), pages 1682-1721, November.
    3. Peter Backé & Martin Feldkircher & Tomáš Slacík, 2013. "Economic Spillovers from the Euro Area to the CESEE Region via the Financial Channel: A GVAR Approach," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 50-64.
    4. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Feldkircher, Martin, 2015. "A global macro model for emerging Europe," Journal of Comparative Economics, Elsevier, vol. 43(3), pages 706-726.
    7. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 642-675, October.
    8. Bruno Merlevede & Joseph Plasmans & Bas van Aarle, 2003. "A Small Macroeconomic Model of the EU-Accession Countries," Open Economies Review, Springer, vol. 14(3), pages 221-250, July.
    9. Jouko Rautava, 2013. "Oil Prices, Excess Uncertainty and Trend Growth," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 77-87.
    10. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    11. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2014. "Forecasting with Bayesian Global Vector Autoregressive Models: A Comparison of Priors," Working Papers 189, Oesterreichische Nationalbank (Austrian Central Bank).
    2. Florian Huber & Jesus Crespo-Cuaresma & Martin Feldkircher, 2014. "Forecasting with Bayesian Global Vector Autoregressions," ERSA conference papers ersa14p25, European Regional Science Association.
    3. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    4. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    5. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
    6. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016. "Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
    7. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
    8. Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2016. "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1371-1391, November.
    9. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    11. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    12. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    13. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    14. Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016. "Exploiting the monthly data flow in structural forecasting," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.
    15. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    16. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    17. Marco Fruzzetti & Tiziano Ropele, 2024. "Nowcasting Italian industrial production: the predictive role of lubricant oils," Questioni di Economia e Finanza (Occasional Papers) 866, Bank of Italy, Economic Research and International Relations Area.
    18. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    19. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    20. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019. "Large time‐varying parameter VARs: A nonparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.

    More about this item

    Keywords

    trade linkages; forecasting; Central; Eastern and Southeastern Europe;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbfi:y:2014:i:1:b:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Elisabeth Beckmann (email available below). General contact details of provider: https://edirc.repec.org/data/oenbbat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.