IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43540-4.html
   My bibliography  Save this article

Deploying green hydrogen to decarbonize China’s coal chemical sector

Author

Listed:
  • Yang Guo

    (Princeton University)

  • Liqun Peng

    (Princeton University)

  • Jinping Tian

    (Tsinghua University)

  • Denise L. Mauzerall

    (Princeton University
    Princeton University)

Abstract

China’s coal chemical sector uses coal as both a fuel and feedstock and its increasing greenhouse gas (GHG) emissions are hard to abate by electrification alone. Here we explore the GHG mitigation potential and costs for onsite deployment of green H2 and O2 in China’s coal chemical sector, using a life-cycle assessment and techno-economic analyses. We estimate that China’s coal chemical production resulted in GHG emissions of 1.1 gigaton CO2 equivalent (GtCO2eq) in 2020, equal to 9% of national emissions. We project GHG emissions from China’s coal chemical production in 2030 to be 1.3 GtCO2eq, ~50% of which can be reduced by using solar or wind power-based electrolytic H2 and O2 to replace coal-based H2 and air separation-based O2 at a cost of 10 or 153 Chinese Yuan (CNY)/tCO2eq, respectively. We suggest that provincial regions determine whether to use solar or wind power for water electrolysis based on lowest cost options, which collectively reduce 53% of the 2030 baseline GHG emissions at a cost of 9 CNY/tCO2eq. Inner Mongolia, Shaanxi, Ningxia, and Xinjiang collectively account for 52% of total GHG mitigation with net cost reductions. These regions are well suited for pilot policies to advance demonstration projects.

Suggested Citation

  • Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43540-4
    DOI: 10.1038/s41467-023-43540-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43540-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43540-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lopolito, Antonio & Falcone, Pasquale Marcello & Sica, Edgardo, 2022. "The role of proximity in sustainability transitions: A technological niche evolution analysis," Research Policy, Elsevier, vol. 51(3).
    2. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    3. Liqun Peng & Denise L. Mauzerall & Yaofeng D. Zhong & Gang He, 2023. "Heterogeneous effects of battery storage deployment strategies on decarbonization of provincial power systems in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    5. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.
    6. Idiano D’Adamo & Pasquale Marcello Falcone & Enrica Imbert & Piergiuseppe Morone, 2022. "Exploring regional transitions to the bioeconomy using a socio-economic indicator: the case of Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 39(3), pages 989-1021, October.
    7. repec:reg:rpubli:282 is not listed on IDEAS
    8. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yi & Yi, Qun & Kang, Jing-Xian & Zhang, Ya-Gang & Li, Wen-Ying & Feng, Jie & Xie, Ke-Chang, 2019. "Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints," Applied Energy, Elsevier, vol. 254(C).
    2. Khalil, Umair, 2017. "Do more guns lead to more crime? Understanding the role of illegal firearms," Journal of Economic Behavior & Organization, Elsevier, vol. 133(C), pages 342-361.
    3. Glenn Jenkins & Chun-Yan Kuo & Arnold C. Harberger, 2011. "Cost-Benefit Analysis for Investment Decisions: Chapter 15 (Cost-Effectiveness and Cost-Utility Analysis)," Development Discussion Papers 2011-15, JDI Executive Programs.
    4. Muhammad Rafiq & Mir Kalan Shah, 2010. "The Value of Reduced Risk of Injury and Deaths in Pakistan—Using Actual and Perceived Risk Estimates," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 49(4), pages 823-837.
    5. Marcela Parada-Contzen & Andrés Riquelme-Won & Felipe Vasquez-Lavin, 2013. "The value of a statistical life in Chile," Empirical Economics, Springer, vol. 45(3), pages 1073-1087, December.
    6. Min Gong & David Krantz & Elke Weber, 2014. "Why Chinese discount future financial and environmental gains but not losses more than Americans," Journal of Risk and Uncertainty, Springer, vol. 49(2), pages 103-124, October.
    7. Ryan Edwards, 2013. "The cost of uncertain life span," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(4), pages 1485-1522, October.
    8. James K. Hammitt, 2020. "Valuing mortality risk in the time of COVID-19," Journal of Risk and Uncertainty, Springer, vol. 61(2), pages 129-154, October.
    9. Sandra Schaffner & Hannes Spengler, 2005. "Der Einfluss unbeobachteter Heterogenität auf kompensatorische Lohndifferentiale und den Wert eines statistischen Lebens: eine mikroökonometrische Parallelanalyse mit IABS und SOEP," Discussion Papers of DIW Berlin 539, DIW Berlin, German Institute for Economic Research.
    10. Moreno Gigi & van Eijndhoven Emma & Benner Jennifer & Sullivan Jeffrey, 2017. "The Long-Term Impact of Price Controls in Medicare Part D," Forum for Health Economics & Policy, De Gruyter, vol. 20(2), pages 1-56, December.
    11. French, Michael T. & Gumus, Gulcin & Homer, Jenny F., 2009. "Public policies and motorcycle safety," Journal of Health Economics, Elsevier, vol. 28(4), pages 831-838, July.
    12. James J. Heckman, 2015. "Introduction to A Theory of the Allocation of Time by Gary Becker," Economic Journal, Royal Economic Society, vol. 0(583), pages 403-409, March.
    13. Kuhn, Michael & Frankovic, Ivan & Wrzaczek, Stefan, 2017. "Medical Progress, Demand for Health Care, and Economic Performance," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168249, Verein für Socialpolitik / German Economic Association.
    14. Hippolyte d’Albis & Emmanuel Thibault, 2018. "Ambiguous life expectancy and the demand for annuities," Theory and Decision, Springer, vol. 85(3), pages 303-319, October.
    15. Nicholas Z Muller & Akshaya Jha, 2017. "Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    16. Gopal K. Basak & Chandramauli Chakraborty & Pranab Kumar Das, 2021. "Optimal Lockdown Strategy in a Pandemic: An Exploratory Analysis for Covid-19," Papers 2109.02512, arXiv.org.
    17. Donald F. Vitaliano, 2019. "Estimation of Wage–Risk Differentials Without Wages," The American Economist, Sage Publications, vol. 64(2), pages 188-196, October.
    18. Nikolaos Georgantzis & Efi Vasileiou, 2014. "Are Dangerous Jobs Paid Better? European Evidence," Research in Labor Economics, in: New Analyses of Worker Well-Being, volume 38, pages 163-192, Emerald Group Publishing Limited.
    19. Aaron Sojourner, "undated". "Partial identification of willingness-to-pay using shape restrictions with an application to the value of a statistical life," Working Papers 0110, Human Resources and Labor Studies, University of Minnesota (Twin Cities Campus).
    20. Leroux, Marie-Louise & Ponthiere, Gregory, 2013. "Utilitarianism and unequal longevities: A remedy?," Economic Modelling, Elsevier, vol. 30(C), pages 888-899.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43540-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.