IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v40y2015i2p318-345.html
   My bibliography  Save this article

University patenting: a comparison of 300 leading universities worldwide

Author

Listed:
  • Christian Fisch
  • Tobias Hassel
  • Philipp Sandner
  • Joern Block

Abstract

Despite a worldwide increase in university patenting, empirical studies have largely focused on analyzing university patenting in individual countries and regions. We provide analyses from an international perspective, examining patents at the top 300 universities worldwide. By providing a patent ranking system and an analysis of the determinants of university patenting, we enable an international comparison not only between different countries but also between universities within countries. A ranking of the top-patenting universities shows a huge predominance of US universities: 18 of the top 25 universities are located in the US, with the Massachusetts Institute of Technology being ranked first. Our results show that the propensity to apply for patents is very high among US and Asian universities, while European universities lag behind. In addition to the home country, further determinants of university patenting are the quantity of the universities’ publications and a technological focus in areas such as chemistry and mechanical engineering. However, the size of a university and the quality of its publications are not found to be significant determinants. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Christian Fisch & Tobias Hassel & Philipp Sandner & Joern Block, 2015. "University patenting: a comparison of 300 leading universities worldwide," The Journal of Technology Transfer, Springer, vol. 40(2), pages 318-345, April.
  • Handle: RePEc:kap:jtecht:v:40:y:2015:i:2:p:318-345
    DOI: 10.1007/s10961-014-9355-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10961-014-9355-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10961-014-9355-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    2. Hu, Mei-Chih & Mathews, John A., 2008. "China's national innovative capacity," Research Policy, Elsevier, vol. 37(9), pages 1465-1479, October.
    3. Geuna, Aldo & Rossi, Federica, 2011. "Changes to university IPR regulations in Europe and the impact on academic patenting," Research Policy, Elsevier, vol. 40(8), pages 1068-1076, October.
    4. Conti, Annamaria & Gaule, Patrick, 2011. "Is the US outperforming Europe in university technology licensing? A new perspective on the European Paradox," Research Policy, Elsevier, vol. 40(1), pages 123-135, February.
    5. Gustavo A. Crespi & Aldo Geuna & Bart Verspagen, 2007. "University IPRs and Knowledge Transfer. Is the IPR ownership model more efficient?," ICER Working Papers 02-2007, ICER - International Centre for Economic Research.
    6. Weiping Wu & Yu Zhou, 2012. "The third mission stalled? Universities in China’s technological progress," The Journal of Technology Transfer, Springer, vol. 37(6), pages 812-827, December.
    7. Saul Lach & Mark Schankerman, 2008. "Incentives and invention in universities," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 403-433, June.
    8. Hu, Mei-Chih & Mathews, John A., 2005. "National innovative capacity in East Asia," Research Policy, Elsevier, vol. 34(9), pages 1322-1349, November.
    9. Francesco Lissoni & Patrick Llerena & Maureen McKelvey & Bulat Sanditov, 2008. "Academic patenting in Europe: new evidence from the KEINS database," Research Evaluation, Oxford University Press, vol. 17(2), pages 87-102, June.
    10. Bruno Van Pottelsberghe & Dominique Guellec, 2008. "Patents and academic research: a state of the art," ULB Institutional Repository 2013/6187, ULB -- Universite Libre de Bruxelles.
    11. Mowery, David C. & Nelson, Richard R. & Sampat, Bhaven N. & Ziedonis, Arvids A., 2001. "The growth of patenting and licensing by U.S. universities: an assessment of the effects of the Bayh-Dole act of 1980," Research Policy, Elsevier, vol. 30(1), pages 99-119, January.
    12. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    13. Sampat, Bhaven N. & Mowery, David C. & Ziedonis, Arvids A., 2003. "Changes in university patent quality after the Bayh-Dole act: a re-examination," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1371-1390, November.
    14. Di Gregorio, Dante & Shane, Scott, 2003. "Why do some universities generate more start-ups than others?," Research Policy, Elsevier, vol. 32(2), pages 209-227, February.
    15. Siegel, Donald S. & Waldman, David & Link, Albert, 2003. "Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: an exploratory study," Research Policy, Elsevier, vol. 32(1), pages 27-48, January.
    16. Michael Fritsch & Viktor Slavtchev, 2007. "Universities and Innovation in Space," Industry and Innovation, Taylor & Francis Journals, vol. 14(2), pages 201-218.
    17. H. Bulut & G. Moschini, 2009. "US universities' net returns from patenting and licensing: a quantile regression analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(2), pages 123-137.
    18. Perkmann, Markus & King, Zella & Pavelin, Stephen, 2011. "Engaging excellence? Effects of faculty quality on university engagement with industry," Research Policy, Elsevier, vol. 40(4), pages 539-552, May.
    19. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    20. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    21. Paula Stephan & Shiferaw Gurmu & Albert Sumell & Grant Black, 2007. "Who'S Patenting In The University? Evidence From The Survey Of Doctorate Recipients," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 16(2), pages 71-99.
    22. Thursby, Jerry G & Jensen, Richard & Thursby, Marie C, 2001. "Objectives, Characteristics and Outcomes of University Licensing: A Survey of Major U.S. Universities," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 59-72, January.
    23. Jeremy Foltz & Bradford Barham & Kwansoo Kim, 2000. "Universities and agricultural biotechnology patent production," Agribusiness, John Wiley & Sons, Ltd., vol. 16(1), pages 82-95.
    24. Godinho, Manuel Mira & Ferreira, Vítor, 2012. "Analyzing the evidence of an IPR take-off in China and India," Research Policy, Elsevier, vol. 41(3), pages 499-511.
    25. Baldini, Nicola, 2009. "Implementing Bayh-Dole-like laws: Faculty problems and their impact on university patenting activity," Research Policy, Elsevier, vol. 38(8), pages 1217-1224, October.
    26. Liegsalz, Johannes & Wagner, Stefan, 2013. "Patent examination at the State Intellectual Property Office in China," Research Policy, Elsevier, vol. 42(2), pages 552-563.
    27. O'Shea, Rory P. & Allen, Thomas J. & Chevalier, Arnaud & Roche, Frank, 2005. "Entrepreneurial orientation, technology transfer and spinoff performance of U.S. universities," Research Policy, Elsevier, vol. 34(7), pages 994-1009, September.
    28. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    29. Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," Working Papers CEB 05-008.RS, ULB -- Universite Libre de Bruxelles.
    30. Mowery, David C. & Ziedonis, Arvids A., 2002. "Academic patent quality and quantity before and after the Bayh-Dole act in the United States," Research Policy, Elsevier, vol. 31(3), pages 399-418, March.
    31. Shane, Scott, 2004. "Encouraging university entrepreneurship? The effect of the Bayh-Dole Act on university patenting in the United States," Journal of Business Venturing, Elsevier, vol. 19(1), pages 127-151, January.
    32. Baldini, Nicola & Grimaldi, Rosa & Sobrero, Maurizio, 2006. "Institutional changes and the commercialization of academic knowledge: A study of Italian universities' patenting activities between 1965 and 2002," Research Policy, Elsevier, vol. 35(4), pages 518-532, May.
    33. Owen-Smith, Jason & Powell, Walter W., 2003. "The expanding role of university patenting in the life sciences: assessing the importance of experience and connectivity," Research Policy, Elsevier, vol. 32(9), pages 1695-1711, October.
    34. Park, Walter G., 2008. "International patent protection: 1960-2005," Research Policy, Elsevier, vol. 37(4), pages 761-766, May.
    35. Ann-Charlotte Fridh & Bo Carlsson, 2002. "special issue: Technology transfer in United States universities," Journal of Evolutionary Economics, Springer, vol. 12(1), pages 199-232.
    36. David C. Mowery & Bhaven N. Sampat, 2005. "The Bayh-Dole Act of 1980 and University--Industry Technology Transfer: A Model for Other OECD Governments?," The Journal of Technology Transfer, Springer, vol. 30(2_2), pages 115-127, January.
    37. Fabrizio, Kira R. & Di Minin, Alberto, 2008. "Commercializing the laboratory: Faculty patenting and the open science environment," Research Policy, Elsevier, vol. 37(5), pages 914-931, June.
    38. Hewitt-Dundas, Nola, 2012. "Research intensity and knowledge transfer activity in UK universities," Research Policy, Elsevier, vol. 41(2), pages 262-275.
    39. Manuel Acosta & Daniel Coronado & M. Dolores Leon & M. Angeles Martinez, 2009. "Production of University Technological Knowledge in European Regions: Evidence from Patent Data," Regional Studies, Taylor & Francis Journals, vol. 43(9), pages 1167-1181.
    40. Li, Xibao, 2012. "Behind the recent surge of Chinese patenting: An institutional view," Research Policy, Elsevier, vol. 41(1), pages 236-249.
    41. Crespi, Gustavo & D'Este, Pablo & Fontana, Roberto & Geuna, Aldo, 2011. "The impact of academic patenting on university research and its transfer," Research Policy, Elsevier, vol. 40(1), pages 55-68, February.
    42. Van Looy, Bart & Landoni, Paolo & Callaert, Julie & van Pottelsberghe, Bruno & Sapsalis, Eleftherios & Debackere, Koenraad, 2011. "Entrepreneurial effectiveness of European universities: An empirical assessment of antecedents and trade-offs," Research Policy, Elsevier, vol. 40(4), pages 553-564, May.
    43. Ajay Agrawal & Rebecca Henderson, 2002. "Putting Patents in Context: Exploring Knowledge Transfer from MIT," Management Science, INFORMS, vol. 48(1), pages 44-60, January.
    44. Sun, Yifei, 2003. "Determinants of foreign patents in China," World Patent Information, Elsevier, vol. 25(1), pages 27-37, March.
    45. Stefano Breschi & Francesco Lissoni & Fabio Montobbio, 2006. "University patenting and scientific productivity. A quantitative study of Italian academic inventors," KITeS Working Papers 189, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Nov 2006.
    46. Stefano Breschi & Francesco Lissoni & Fabio Montobbio, 2005. "From Publishing to Patenting : do Productive Scientists Turn into Academi Inventors ?," Revue d'Économie Industrielle, Programme National Persée, vol. 110(1), pages 75-102.
    47. Geuna, Aldo & Nesta, Lionel J.J., 2006. "University patenting and its effects on academic research: The emerging European evidence," Research Policy, Elsevier, vol. 35(6), pages 790-807, July.
    48. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    49. Zucker, Lynne G & Darby, Michael R & Brewer, Marilynn B, 1998. "Intellectual Human Capital and the Birth of U.S. Biotechnology Enterprises," American Economic Review, American Economic Association, vol. 88(1), pages 290-306, March.
    50. Furman, Jeffrey L. & Porter, Michael E. & Stern, Scott, 2002. "The determinants of national innovative capacity," Research Policy, Elsevier, vol. 31(6), pages 899-933, August.
    51. Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Fisch & Joern Block & Philipp Sandner, 2016. "Chinese university patents: quantity, quality, and the role of subsidy programs," The Journal of Technology Transfer, Springer, vol. 41(1), pages 60-84, February.
    2. Manuel Acosta & Daniel Coronado & Mª Dolores León & Pedro Jesús Moreno, 2020. "The Production of Academic Technological Knowledge: an Exploration at the Research Group Level," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1003-1025, September.
    3. Daniel Coronado & Esther Flores & M. Ángeles Martínez, 2017. "The role of regional economic specialization in the production of university-owned patents," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 59(2), pages 513-533, September.
    4. Christopher S. Hayter & Jacob H. Rooksby, 2016. "A legal perspective on university technology transfer," The Journal of Technology Transfer, Springer, vol. 41(2), pages 270-289, April.
    5. Gianluca Murgia, 2021. "The impact of collaboration diversity and joint experience on the reiteration of university co-patents," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1108-1143, August.
    6. Yindan Ye & Kevin De Moortel & Thomas Crispeels, 2020. "Network dynamics of Chinese university knowledge transfer," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1228-1254, August.
    7. Supriya Munshaw & Soo-Hoon Lee & Phillip H. Phan & Kieren A. Marr, 2019. "The influence of human capital and perceived university support on patent applications of biomedical investigators," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1216-1235, August.
    8. Xia Fan & Xiaowan Yang & Zhou Yu, 2021. "Effect of basic research and applied research on the universities’ innovation capabilities: the moderating role of private research funding," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5387-5411, July.
    9. Juan Antonio Dip, 2021. "What does U-multirank tell us about knowledge transfer and research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3011-3039, April.
    10. Federico Moretti, 2019. "“Open” Lab? Studying the Implementation of Open Innovation Practices in a University Laboratory," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ani Gerbin & Mateja Drnovsek, 2016. "Determinants and public policy implications of academic-industry knowledge transfer in life sciences: a review and a conceptual framework," The Journal of Technology Transfer, Springer, vol. 41(5), pages 979-1076, October.
    2. Walter, Sascha G. & Schmidt, Arne & Walter, Achim, 2016. "Patenting rationales of academic entrepreneurs in weak and strong organizational regimes," Research Policy, Elsevier, vol. 45(2), pages 533-545.
    3. Christian Fisch & Joern Block & Philipp Sandner, 2016. "Chinese university patents: quantity, quality, and the role of subsidy programs," The Journal of Technology Transfer, Springer, vol. 41(1), pages 60-84, February.
    4. Manuel Acosta & Daniel Coronado & M. Ángeles Martínez, 2018. "Does technological diversification spur university patenting?," The Journal of Technology Transfer, Springer, vol. 43(1), pages 96-119, February.
    5. Pluvia Zuniga, 2011. "The State of Patenting at Research Institutions in Developing Countries: Policy Approaches and Practices," WIPO Economic Research Working Papers 04, World Intellectual Property Organization - Economics and Statistics Division, revised Dec 2011.
    6. repec:wip:wpaper:4 is not listed on IDEAS
    7. Acosta, Manuel & Coronado, Daniel & Martínez, M. Ángeles, 2012. "Spatial differences in the quality of university patenting: Do regions matter?," Research Policy, Elsevier, vol. 41(4), pages 692-703.
    8. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    9. Foray, Dominique & Lissoni, Francesco, 2010. "University Research and Public–Private Interaction," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 275-314, Elsevier.
    10. Cornelia Lawson, 2013. "Academic patenting: the importance of industry support," The Journal of Technology Transfer, Springer, vol. 38(4), pages 509-535, August.
    11. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    12. Isabel Maria Bodas Freitas & Aldo Geuna & Federica Rossi, 2011. "University–Industry Interactions: The Unresolved Puzzle," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 11, Edward Elgar Publishing.
    13. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    14. Poh Kam Wong & Annette Singh, 2010. "University patenting activities and their link to the quantity and quality of scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 271-294, April.
    15. Van Looy, Bart & Landoni, Paolo & Callaert, Julie & van Pottelsberghe, Bruno & Sapsalis, Eleftherios & Debackere, Koenraad, 2011. "Entrepreneurial effectiveness of European universities: An empirical assessment of antecedents and trade-offs," Research Policy, Elsevier, vol. 40(4), pages 553-564, May.
    16. Daniel Coronado & Esther Flores & M. Ángeles Martínez, 2017. "The role of regional economic specialization in the production of university-owned patents," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 59(2), pages 513-533, September.
    17. Tomás del Barrio-Castro & José García-Quevedo, 2009. "The determinants of university patenting: Do incentives matter?," Working Papers XREAP2009-14, Xarxa de Referència en Economia Aplicada (XREAP), revised Nov 2009.
    18. Aurora A. C. Teixeira & Luisa Mota, 2012. "A bibliometric portrait of the evolution, scientific roots and influence of the literature on university–industry links," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 719-743, December.
    19. Lee Davis & Maria Larsen & Peter Lotz, 2011. "Scientists’ perspectives concerning the effects of university patenting on the conduct of academic research in the life sciences," The Journal of Technology Transfer, Springer, vol. 36(1), pages 14-37, February.
    20. Soares, Thiago J. & Torkomian, Ana L.V. & Nagano, Marcelo Seido, 2020. "University regulations, regional development and technology transfer: The case of Brazil," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    21. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.

    More about this item

    Keywords

    University patenting; Patents; Ranking; Publishing and patenting; O32; O34; O53; O57; I23;
    All these keywords.

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital
    • O53 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Asia including Middle East
    • O57 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Comparative Studies of Countries
    • I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:40:y:2015:i:2:p:318-345. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.