IDEAS home Printed from
   My bibliography  Save this article

Productive Capacity of Biodiversity: Crop Diversity and Permanent Grasslands in Northwestern France


  • François Bareille

    () (Economie Publique, INRAE, Agro Paris Tech, Université Paris-Saclay)

  • Pierre Dupraz



Previous studies on the productive capacity of biodiversity emphasized that greater crop diversity increases crop yields. We examined the influence of two components of agricultural biodiversity—farm-level crop diversity and permanent grasslands—on the production of cereals and milk. We focused on productive interactions between these two biodiversity components, and between them and conventional inputs. Using a variety of estimators (seemingly unrelated regressions and general method of moments, with or without restrictions) and functional forms, we estimated systems of production functions using a sample of 3960 mixed crop-livestock farms from 2002 to 2013 in France. The estimates highlight that increasing permanent grassland proportion increased cereal yields under certain conditions and confirm that increasing crop diversity increases cereal and milk yields. Crop diversity and permanent grasslands can substitute each other and be a substitute for fertilizers and pesticides.

Suggested Citation

  • François Bareille & Pierre Dupraz, 2020. "Productive Capacity of Biodiversity: Crop Diversity and Permanent Grasslands in Northwestern France," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(2), pages 365-399, October.
  • Handle: RePEc:kap:enreec:v:77:y:2020:i:2:d:10.1007_s10640-020-00499-w
    DOI: 10.1007/s10640-020-00499-w

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Lynn Mainwaring, 2001. "Biodiversity, Biocomplexity, and the Economics of Genetic Dissimilarity," Land Economics, University of Wisconsin Press, vol. 77(1), pages 79-83.
    2. Kim, Kwansoo & Barham, Bradford L. & Coxhead, Ian, 2001. "Measuring soil quality dynamics: A role for economists, and implications for economic analysis," Agricultural Economics, Blackwell, vol. 25(1), pages 13-26, June.
    3. Salvatore Di Falco & Jean-Paul Chavas, 2008. "Rainfall Shocks, Resilience, and the Effects of Crop Biodiversity on Agroecosystem Productivity," Land Economics, University of Wisconsin Press, vol. 84(1), pages 83-96.
    4. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2017. "Endogenous environmental variables in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 199(2), pages 131-140.
    5. Asunka, Samuel & Shumway, C. Richard, 1996. "Allocatable Fixed Inputs And Jointness In Agricultural Production: More Implications," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 25(2), pages 1-6, October.
    6. Donfouet, Hermann Pythagore Pierre & Barczak, Aleksandra & Détang-Dessendre, Cécile & Maigné, Elise, 2017. "Crop Production and Crop Diversity in France: A Spatial Analysis," Ecological Economics, Elsevier, vol. 134(C), pages 29-39.
    7. Thenail, C., 2002. "Relationships between farm characteristics and the variation of the density of hedgerows at the level of a micro-region of bocage landscape. Study case in Brittany, France," Agricultural Systems, Elsevier, vol. 71(3), pages 207-230, March.
    8. Asunka, Samuel & Shumway, C. Richard, 1996. "Allocatable Fixed Inputs and Jointness in Agricultural Production: More Implications," Agricultural and Resource Economics Review, Cambridge University Press, vol. 25(2), pages 143-148, October.
    9. Frederic Ang & Simon M. Mortimer & Francisco J. Areal & Richard Tiffin, 2018. "On the Opportunity Cost of Crop Diversification," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 794-814, September.
    10. Amani Omer & Unai Pascual & Noel P. Russell, 2007. "Biodiversity Conservation and Productivity in Intensive Agricultural Systems," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(2), pages 308-329, June.
    11. Di Falco, Salvatore & Bezabih, Mintewab & Yesuf, Mahmud, 2010. "Seeds for livelihood: Crop biodiversity and food production in Ethiopia," Ecological Economics, Elsevier, vol. 69(8), pages 1695-1702, June.
    12. Salvatore Di Falco & Jean-Paul Chavas, 2006. "Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 33(3), pages 289-314, September.
    13. Zhang, Wei & Ricketts, Taylor H. & Kremen, Claire & Carney, Karen & Swinton, Scott M., 2007. "Ecosystem services and dis-services to agriculture," Ecological Economics, Elsevier, vol. 64(2), pages 253-260, December.
    14. Perrings, Charles, 2010. "The economics of biodiversity: the evolving agenda," Environment and Development Economics, Cambridge University Press, vol. 15(6), pages 721-746, December.
    15. Carl Gaigné & Vincent Chatellier, 2012. "Les logiques économiques de la spécialisation productive du territoire agricole français," Post-Print hal-01208828, HAL.
    16. Alain Carpentier & Elodie Letort, 2012. "Accounting for Heterogeneity in Multicrop Micro-Econometric Models: Implications for Variable Input Demand Modeling," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 209-224.
    17. Frederik Noack & Marie-Catherine Riekhof & Salvatore Di Falco, 2019. "Droughts, Biodiversity, and Rural Incomes in the Tropics," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(4), pages 823-852.
    18. Klemick, Heather, 2011. "Shifting cultivation, forest fallow, and externalities in ecosystem services: Evidence from the Eastern Amazon," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 95-106, January.
    19. Yann Desjeux & Pierre Dupraz & Tom Kuhlman & Maria Luisa Paracchini & Rolf Michels & Elise Maigne & Stijn Reinhard, 2015. "Evaluating the impact of rural development measures on nature value indicators at different spatial levels: Application to France and The Netherlands," Post-Print hal-02638882, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François Bareille & Pierre Dupraz, 2017. "Biodiversity Productive Capacity in Mixed Farms of North-West of France: a Multi-output Primal System," Working Papers SMART - LERECO 17-03, INRAE UMR SMART-LERECO.
    2. Bareille, François & Dupraz, Pierre, 2016. "Biodiversity productive effects in milk farms of western France: a multi-output primal system," 149th Seminar, October 27-28, 2016, Rennes, France 244774, European Association of Agricultural Economists.
    3. Alain CARPENTIER & Alexandre GOHIN & Paolo SCKOKAI & Alban THOMAS, 2015. "Economic modelling of agricultural production:past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 96(1), pages 131-166.
    4. Pascual, Unai & Narloch, Ulf & Nordhagen, Stella & Drucker, Adam G., 2011. "The economics of agrobiodiversity conservation for food security under climate change," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 11(01), pages 1-30, November.
    5. Bozzola, Martina & Smale, Melinda, 2020. "The welfare effects of crop biodiversity as an adaptation to climate shocks in Kenya," World Development, Elsevier, vol. 135(C).
    6. Prosper F. Bangwayo‐Skeete & Mintewab Bezabih & Precious Zikhali, 2012. "Crop biodiversity, productivity and production risk: Panel data micro‐evidence from Ethiopia," Natural Resources Forum, Blackwell Publishing, vol. 36(4), pages 263-273, November.
    7. Omer, Amani & Pascual, Unai & Russell, Noel, 2010. "A theoretical model of agrobiodiversity as a supporting service for sustainable agricultural intensification," Ecological Economics, Elsevier, vol. 69(10), pages 1926-1933, August.
    8. Russell, Noel P. & Omer, Amani A. & Pascual, Unai, 2009. "Technology, preferences and the sustainable intensification of agricultural production," 2009 Conference, August 16-22, 2009, Beijing, China 51743, International Association of Agricultural Economists.
    9. Bareille, Francois & Boussard, Hugues & Thenail, Claudine, 2020. "Productive ecosystem services and collective management: Lessons from a realistic landscape model," Ecological Economics, Elsevier, vol. 169(C).
    10. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    11. Ayenew, Habtamu Yesigat & Sauer, Johannes & Abate-Kassa, Getachew, 2016. "Cost of Risk Exposure, Farm Disinvestment and Adaptation to Climate Uncertainties: The Case of Arable Farms in the EU," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235595, Agricultural and Applied Economics Association.
    12. Alain Carpentier & Elodie Letort, 2014. "Multicrop Production Models with Multinomial Logit Acreage Shares," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 537-559, December.
    13. Alain Carpentier & Elodie Letort, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers SMART - LERECO 09-17, INRAE UMR SMART-LERECO.
    14. Lee, Heera & Bogner, Christina & Lee, Saem & Koellner, Thomas, 2016. "Crop selection under price and yield fluctuation: Analysis of agro-economic time series from South Korea," Agricultural Systems, Elsevier, vol. 148(C), pages 1-11.
    15. Lanz, Bruno & Dietz, Simon & Swanson, Tim, 2018. "The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment," Ecological Economics, Elsevier, vol. 144(C), pages 260-277.
    16. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    17. Matsushita, Kyohei & Yamane, Fumihiro & Asano, Kota, 2016. "Linkage between crop diversity and agro-ecosystem resilience: Nonmonotonic agricultural response under alternate regimes," Ecological Economics, Elsevier, vol. 126(C), pages 23-31.
    18. Mintewab Bezabih & Mare Sarr, 2012. "Risk Preferences and Environmental Uncertainty: Implications for Crop Diversification Decisions in Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(4), pages 483-505, December.
    19. Omiat, George & Shively, Gerald, 2020. "Rainfall and child weight in Uganda," Economics & Human Biology, Elsevier, vol. 38(C).
    20. Nordhagen, Stella & Pascual, Unai & Drucker, Adam G., 2017. "Feeding the Household, Growing the Business, or Just Showing Off? Farmers' Motivations for Crop Diversity Choices in Papua New Guinea," Ecological Economics, Elsevier, vol. 137(C), pages 99-109.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:77:y:2020:i:2:d:10.1007_s10640-020-00499-w. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.